Heart Failure Evolution Model Based on Anomalous Diffusion Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Theoretical Models
3. Results
4. Discussion
Funding
Conflicts of Interest
References
- Taleb, N.N. The Black Swan—The Impact of the Highly Improbable; Random House: New York, NY, USA, 2007. [Google Scholar]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Wallis, J.R. Noah, Joseph, and operational hydrology. Water Resour. Res. 1968, 4, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Stanley, H.E.; Mantegna, R.N. An Introduction to Econophysics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- do Valle, I.F.; Roweth, H.G.; Malloy, M.W.; Moco, S.; Barron, D.; Battinelli, E.; Loscalzo, J.; Barabási, A.L. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2021, 2, 143–155. [Google Scholar] [CrossRef]
- Moszczynski, P.; Walczak, A.; Krzesinski, P. Prediction of cardiological parameters evolution with the Markov model. In Proceedings of the 37th IBIMA Conference, Cordoba, Spain, 30–31 May 2021. [Google Scholar]
- Walczak, A.; Moszczyński, P.; Krzesiński, P. Evolution of Hemodynamic Parameters Simulated by Means of Diffusion Models. Appl. Sci. 2021, 11, 11412. [Google Scholar] [CrossRef]
- Bassler, K.; Gemunu, E.; Gunaratne, H.; McCauley, J.L. Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance. Phys. A Stat. Mech. Its Appl. 2006, 369, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Krzesinski, P.; Sobotnicki, A.; Gacek, A.; Siebert, J.; Walczak, A.; Murawski, P.; Gielerak, G. Noninvasive Bioimpedance Methods From the Viewpoint of Remote Monitoring in Heart Failure. JMIR mHealth uHealth 2021, 9, e25937. [Google Scholar] [CrossRef] [PubMed]
- Krzesiński, P.; Jankowska, E.A.; Siebert, J.; Galas, A.; Piotrowicz, K.; Stańczyk, A.; Siwołowski, P.; Gutknecht, P.; Chrom, P.; Murawski, P.; et al. Effects of an outpatient intervention comprising nurse-led non-invasive assessments, telemedicine support and remote cardiologists’ decisions in patients with heart failure (AMULET study): A randomised controlled trial. Eur. J. Hear. Fail. 2021, 24, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Krzesiński, P.; Siebert, J.; Jankowska, E.A.; Banasiak, W.; Piotrowicz, K.; Stańczyk, A.; Galas, A.; Walczak, A.; Murawski, P.; Chrom, P.; et al. Rationale and design of the AMULET study: A new Model of telemedical care in patients with heart failure. ESC Hear. Fail. 2021, 8, 2569–2579. [Google Scholar] [CrossRef]
- Krzesiński, P.; Siebert, J.; Jankowska, E.A.; Galas, A.; Piotrowicz, K.; Stańczyk, A.; Siwołowski, P.; Gutknecht, P.; Chrom, P.; Murawski, P.; et al. Nurse-led ambulatory care supported by non-invasive haemodynamic assessment after acute heart failure decompensation. ESC Hear. Fail. 2021, 8, 1018–1026. [Google Scholar] [CrossRef]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; North Holland: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Risken, H. The Fokker Planck Equation; Springer: Berlin, Germany, 1989. [Google Scholar]
- Coley, W.T.; Kalmykov, Y.P.; Waldron, J.T. The Langevin Equation; World Scientific: Singapore, 1996. [Google Scholar]
- Hughes, B.D. Random Walks and Random Environments, Volume 1: Random Walks; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Weiss, G.H. Aspects and Applications of the Random Walk; North-Holland: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Zaslavsky, G.M.; Benkadda, S. Kinetics and Nonlinear Dynamics in Fluids and Plasmas, Chaos; Springer: Berlin, Germany, 1998. [Google Scholar]
- Barabási, A.-L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef]
- Oliveira, J.G.; Barabási, A.-L. Darwin and Einstein correspondence patterns. Nature 2005, 437, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dezsö, Z.; Almaas, E.; Lukács, A.; Rácz, B.; Szakadát, I.; Barabási, A.-L. Dynamics of information access on the web. Phys. Rev. E 2006, 73, 066132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, A. Exact Results for the Barabási Model of Human Dynamics. Phys. Rev. Lett. 2005, 95, 248701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161–R208. [Google Scholar] [CrossRef]
- Barkai, E.; Fleurov, V. Simulating Brownian Type of Motion—The Rescaling Velocity Approach vs Langevin Approach. Phys. Rev. E 1995, 52, 137. [Google Scholar] [CrossRef]
- Barkai, E.; Fleurov, V. Brownian type of motion of a randomly kicked particle far from and close to the diffusion limit. Phys. Rev. E 1995, 52, 1558–1570. [Google Scholar] [CrossRef]
- Barkai, E.; Eisenberg, R.S.; Schuss, Z. Bi-Directional Shot Noise in a Singly Occupied Channel. Phys. Rev. E 1996, 54, 1161. [Google Scholar] [CrossRef]
- Barkai, E.; Fleurov, V. Dissipation and fluctuation for a randomly kicked particle: Normal and anomalous diffusion. Chem. Phys. 1996, 212, 69–88. [Google Scholar] [CrossRef]
- Barkai, E.; Klafter, J. Crossover from Dispersive to Regular Transport in Biased Maps. Phys. Rev. Lett. 1997, 79, 2245–2248. [Google Scholar] [CrossRef]
- Flomenbom, O. Mathematical treatments that solve single molecule. Biophys. Rev. Lett. 2013, 8, 109–136. [Google Scholar] [CrossRef]
- Schlesinger, M.F.; Zaslavsky, G.M.; Klafter, J. Strange Kinetics. Nature 1993, 363, 31–37. [Google Scholar] [CrossRef]
- Hill, R.M.; Dissado, L.A. Debye, and non-Debye relaxation. J. Phys. C Solid State Phys. 1985, 18, 3829–3836. [Google Scholar] [CrossRef]
- Lukichev, A. Relaxation function for the non-Debye relaxation spectra description. Chem. Phys. 2014, 428, 29–33. [Google Scholar] [CrossRef]
- Fronczak, A.; Fronczak, P.; Hołyst, J.A. Microscopic explanation of non-Debye relaxation for heat transfer. Phys. A Stat. Mech. Its Appl. 2007, 375, 571–576. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walczak, A.A. Heart Failure Evolution Model Based on Anomalous Diffusion Theory. Entropy 2022, 24, 1780. https://doi.org/10.3390/e24121780
Walczak AA. Heart Failure Evolution Model Based on Anomalous Diffusion Theory. Entropy. 2022; 24(12):1780. https://doi.org/10.3390/e24121780
Chicago/Turabian StyleWalczak, Andrzej Augustyn. 2022. "Heart Failure Evolution Model Based on Anomalous Diffusion Theory" Entropy 24, no. 12: 1780. https://doi.org/10.3390/e24121780
APA StyleWalczak, A. A. (2022). Heart Failure Evolution Model Based on Anomalous Diffusion Theory. Entropy, 24(12), 1780. https://doi.org/10.3390/e24121780