Quantum Battery Based on Hybrid Field Charging
Abstract
:1. Introduction
2. Quantum Battery Composed of Non-Interacting Atom
3. Quantum Battery Composed of Interacting Atoms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, Z.L.; Ashhab, S.; You, J.Q.; Nori, F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 2013, 85, 623. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153. [Google Scholar] [CrossRef] [Green Version]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. N. J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef] [Green Version]
- Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 2013, 87, 042123. [Google Scholar] [CrossRef] [Green Version]
- Hovhannisyan, K.V.; Perarnau–Llobet, M.; Huber, M.; Acín, A. Entanglement Generation is Not Necessary for Optimal Work Extraction. Phys. Rev. Lett. 2013, 111, 240401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, G.L.; Campbell, S. Correlation approach to work extraction from finite quantum systems. J. Phys. B 2015, 48, 035501. [Google Scholar] [CrossRef] [Green Version]
- Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J.; Vértesi, T.; Quintino, M.T.; Brunner, N. One-way Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 2014, 112, 200402. [Google Scholar] [CrossRef] [Green Version]
- Friis, N.; Huber, M. Precision and Work Fluctuations in Gaussian Battery Charging. Quantum 2018, 2, 61. [Google Scholar] [CrossRef]
- Farina, D.; Andolina, G.M.; Mari, A.; Polini, M.; Giovannetti, V. Charger-mediated energy transfer for quantum batteries: An open-system approach. Phys. Rev. B 2019, 99, 035421. [Google Scholar] [CrossRef] [Green Version]
- Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. N. J. Phys. 2015, 17, 075015. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Çakmak, B.; Campbell, S.; Zinner, N.T. Stable adiabatic quantum batteries. Phys. Rev. E 2019, 100, 032107. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.F.; Jing, J. Magnon-mediated quantum battery under systematic errors. Phys. Rev. A 2021, 104, 032606. [Google Scholar] [CrossRef]
- Andolina, G.M.; Keck, M.; Mari, A.; Giovannetti, V.; Polini, M. Quantum versus classical many-body batteries. Phys. Rev. B 2019, 99, 205437. [Google Scholar] [CrossRef] [Green Version]
- Rossini, D.; Andolina, G.M.; Polini, M. Many-body localized quantum batteries. Phys. Rev. B 2019, 100, 115142. [Google Scholar] [CrossRef] [Green Version]
- Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 2017, 89, 015006. [Google Scholar] [CrossRef] [Green Version]
- Kiyanagi, Y. Neutron applications developing at compact accelerator-driven neutron sources. AAPPS Bull. 2021, 31, 22. [Google Scholar] [CrossRef]
- Wang, D.R.; Chang, J.; Huang, Q.Y.; Chen, D.D.; Li, P.; Yu, Y.W.D.; Zheng, Z.J. Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundam. Res. 2021, 1, 399–407. [Google Scholar] [CrossRef]
- Ueno, T. Accelerating the IoT: Magnetostrictive Vibrational Power Generators to Replace Batteries. AAPPS Bull. 2020, 30, 4–9. [Google Scholar]
- Quach, J.Q.; Munro, W.J. Using Dark States to Charge and Stabilize Open Quantum Batteries. Phys. Rev. Appl. 2020, 14, 024092. [Google Scholar] [CrossRef]
- Oppenheim, J.; Horodecki, M.; Horodecki, P.; Horodecki, R. Thermodynamical Approach to Quantifying Quantum Correlations. Phys. Rev. Lett. 2002, 89, 180402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitagliano, G.; Klökl, C.; Huber, M.; Friis, N. Trade-off Between Work and Correlations in Quantum Thermodynamics. arXiv 2019, arXiv:1803.06884. [Google Scholar]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics: A topical review. J. Phys. A 2016, 49, 143001. [Google Scholar] [CrossRef]
- Bera, M.N.; Riera, A.; Lewenstein, M.; Winter, A. Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 2017, 8, 2180. [Google Scholar] [CrossRef] [Green Version]
- Manzano, G.; Plastina, F.; Zambrini, R. Optimal Work Extraction and Thermodynamics of Quantum Measurements and Correlations. Phys. Rev. Lett. 2018, 121, 120602. [Google Scholar] [CrossRef] [Green Version]
- Hardal, A.; Müstecaplıoglu, Ö. Superradiant Quantum Heat Engine. Sci. Rep. 2015, 5, 12953. [Google Scholar] [CrossRef] [Green Version]
- Daǧ, C.B.; Niedenzu, W.; Ozaydin, F.; Müstecaplıoǧlu, Ö.E.; Kurizki, G. Temperature Control in Dissipative Cavities by Entangled Dimers. J. Phys. Chem. C 2019, 123, 4035–4043. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Yang, T.R.; Fu, L.B.; Wang, X.G. Powerful harmonic charging in a quantum battery. Phys. Rev. E 2019, 99, 052106. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [Google Scholar] [CrossRef]
- Fusco, L.; Paternostro, M.; De Chiara, G. Work extraction and energy storage in the Dicke model. Phys. Rev. E 2016, 94, 052122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 2018, 98, 205423. [Google Scholar] [CrossRef] [Green Version]
- Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Quantum Batteries-Review Chapter. arXiv 2018, arXiv:1805.05507. [Google Scholar]
- Ghosh, S.; Sen(De), A. Dimensional enhancements in a quantum battery with imperfections. Phys. Rev. A 2022, 105, 022628. [Google Scholar] [CrossRef]
- Gemme, G.; Grossi, M.; Ferraro, D.; Vallecorsa, S.; Sassetti, M. IBM Quantum Platforms: A Quantum Battery Perspective. Batteries 2022, 8, 43. [Google Scholar] [CrossRef]
- Hu, C.K.; Qiu, J.W.; Souza, P.J.P.; Yuan, J.H.; Zhou, Y.X.; Zhang, L.B.; Chu, J.; Pan, X.C.; Hu, L.; Li, J.; et al. Optimal charging of a superconducting quantum battery. Quantum Sci. Technol. 2022, 7, 045018. [Google Scholar] [CrossRef]
- de Buy Wenniger, I.M.; Thomas, S.E.; Maffei, M.; Wein, S.C.; Pont, M.; Harouri, A.; Lemaître, A.; Sagnes, I.; Somaschi, N.; Auffèves, A.; et al. Coherence-powered work exchanges between a solid-state qubit and light fields. arXiv 2022, arXiv:2202.01109. [Google Scholar]
- Joshi, J.; Mahesh, T.S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 2022, 106, 042601. [Google Scholar] [CrossRef]
- Quach, J.Q.; McGhee, K.E.; Ganzer, L.; Rouse, D.M.; Lovett, B.W.; Gauger, E.M.; Keeling, J.; Cerullo, G.; Lidzey, D.G.; Virgili, T. Quantum Batteries Constructed Of A Microcavity Enclosing A Molecular Dye. Sci. Adv. 2022, 8, abk3160. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chen, T.; Xiao, C.; Pan, K.; Jin, G.; Yu, Y.; Chen, A. Quantum Battery Based on Hybrid Field Charging. Entropy 2022, 24, 1821. https://doi.org/10.3390/e24121821
Jiang Y, Chen T, Xiao C, Pan K, Jin G, Yu Y, Chen A. Quantum Battery Based on Hybrid Field Charging. Entropy. 2022; 24(12):1821. https://doi.org/10.3390/e24121821
Chicago/Turabian StyleJiang, Yunxiu, Tianhao Chen, Chu Xiao, Kaiyan Pan, Guangri Jin, Youbin Yu, and Aixi Chen. 2022. "Quantum Battery Based on Hybrid Field Charging" Entropy 24, no. 12: 1821. https://doi.org/10.3390/e24121821
APA StyleJiang, Y., Chen, T., Xiao, C., Pan, K., Jin, G., Yu, Y., & Chen, A. (2022). Quantum Battery Based on Hybrid Field Charging. Entropy, 24(12), 1821. https://doi.org/10.3390/e24121821