Work Measurement in OPEN Quantum System
Abstract
:1. Introduction
2. Work Measurement of an Open Quantum System
3. Work Fluctuation Theorem of Open Quantum System
4. Experimental Feasibility
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Review of Functional
Appendix A.2. Application of the Functional Methods to the Work
References
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131. [Google Scholar] [CrossRef]
- Faist, P.; Sagawa, T.; Kato, K.; Nagaoka, H.; Brandão, F.G.S.L. Macroscopic Thermodynamic Reversibility in Quantum Many-Body Systems. Phys. Rev. Lett. 2019, 123, 250601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.P.; Céleri, L.C.; Landi, G.T.; Paternostro, M. The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 2019, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Sapienza, F.; Cerisola, F.; Roncaglia, A.J. Correlations as a resource in quantum thermodynamics. Nat. Commun. 2019, 10, 2492. [Google Scholar] [CrossRef]
- Micadei, K.; Peterson, J.P.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Landi, G.T.; Batalhão, T.B.; Serra, R.M.; Lutz, E. Reversing the direction of heat flow using quantum correlations. Nat. Commun. 2019, 10, 2456. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef]
- Ptaszyński, K.; Esposito, M. Thermodynamics of Quantum Information Flows. Phys. Rev. Lett. 2019, 122, 150603. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, R.; Samuelsson, P.; Potts, P.P. Autonomous conversion of information to work in quantum dots. Phys. Rev. Res. 2019, 1, 033066. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J.D.; Guarnieri, G.; Mitchison, M.T.; Goold, J. Quantum Fluctuations Hinder Finite-Time Information Erasure near the Landauer Limit. Phys. Rev. Lett. 2020, 125, 160602. [Google Scholar] [CrossRef]
- Funo, K.; Quan, H.T. Path Integral Approach to Quantum Thermodynamics. Phys. Rev. Lett. 2018, 121, 040602. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; McKay, E.; Alhambra, Á.M.; MartÍn-MartÍnez, E. Work Distributions on Quantum Fields. Phys. Rev. Lett. 2019, 122, 240604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665. [Google Scholar] [CrossRef] [Green Version]
- Talkner, P.; Lutz, E.; Hänggi, P. Fluctuation theorems: Work is not an observable. Phys. Rev. E 2007, 75, 050102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A Math. Gen. 1979, 12, L103. [Google Scholar] [CrossRef]
- Boukobza, E.; Tannor, D.J. Thermodynamics of bipartite systems: Application to light-matter interactions. Phys. Rev. A 2006, 74, 063823. [Google Scholar] [CrossRef] [Green Version]
- Seifert, U. First and second law of thermodynamics at strong coupling. Phys. Rev. Lett. 2016, 116, 020601. [Google Scholar] [CrossRef] [Green Version]
- Roncaglia, A.J.; Cerisola, F.; Paz, J.P. Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 2014, 113, 250601. [Google Scholar] [CrossRef] [Green Version]
- Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011, 83, 771. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, B.P.; Watanabe, G.; Talkner, P. Transient quantum fluctuation theorems and generalized measurement. New J. Phys. 2014, 16, 015032. [Google Scholar] [CrossRef] [Green Version]
- Campisi, M.; Talkner, P.; Hänggi, P. Fluctuation Theorem for Arbitrary Open Quantum Systems. Phys. Rev. Lett. 2009, 102, 210401. [Google Scholar] [CrossRef] [PubMed]
- Sone, A.; Liu, Y.X.; Cappellaro, P. Quantum Jarzynski Equality in Open Quantum Systems from the One-Time Measurement Scheme. Phys. Rev. Lett. 2020, 125, 060602. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Cirac, J.I.; Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 2012, 8, 264. [Google Scholar] [CrossRef]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153. [Google Scholar] [CrossRef] [Green Version]
- Patanè, D.; Silva, A.; Amico, L.; Fazio, R.; Santoro, G.E. Adiabatic dynamics in open quantum critical many-body systems. Phys. Rev. Lett. 2008, 101, 175701. [Google Scholar] [CrossRef] [Green Version]
- Viyuela, O.; Rivas, A.; Martin-Delgado, M.A. Two-dimensional density-matrix topological fermionic phases: Topological Uhlmann numbers. Phys. Rev. Lett. 2014, 113, 076408. [Google Scholar] [CrossRef]
- Shabani, A.; Neven, H. Artificial quantum thermal bath: Engineering temperature for a many-body quantum system. Phys. Rev. A 2016, 94, 052301. [Google Scholar] [CrossRef] [Green Version]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys. 2014, 77, 094001. [Google Scholar] [CrossRef]
- Costa-Filho, J.I.; Lima, R.B.B.; Paiva, R.R.; Soares, P.M.; Morgado, W.A.M.; Franco, R.L.; Soares-Pinto, D.O. Enabling quantum non-Markovian dynamics by injection of classical colored noise. Phys. Rev. A 2017, 95, 052126. [Google Scholar] [CrossRef] [Green Version]
- Chenu, A.; Beau, M.; Cao, J.; del Campo, A. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. Phys. Rev. Lett. 2017, 118, 140403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turchette, Q.A.; Myatt, C.J.; King, B.E.; Sackett, C.A.; Kielpinski, D.; Itano, W.M.; Monroe, C.; Wineland, D.J. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 2000, 62, 053807. [Google Scholar] [CrossRef]
- Volterra, V. Theory of Functionals; Dover Publications, Inc.: New York, NY, USA, 1959. [Google Scholar]
- Yan, L.L.; Xiong, T.P.; Rehan, K.; Zhou, F.; Liang, D.F.; Chen, L.; Zhang, J.Q.; Yang, W.L.; Ma, Z.H.; Feng, M. Single-atom demonstration of quantum Landauer principle. Phys. Rev. Lett. 2018, 120, 210601. [Google Scholar] [CrossRef] [Green Version]
- Myatt, C.J.; King, B.E.; Turchette, Q.A.; Sackett, C.A.; Kielpinski, D.; Itano, W.M.; Monroe, C.; Wineland, D.J. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 2000, 403, 269. [Google Scholar] [CrossRef] [PubMed]
- Keselman, A.; Glickman, Y.; Akerman, N.; Kotler, S.; Ozeri, R. High-fidelity state detection and tomography of a single-ion Zeeman Qubit. New J. Phys. 2011, 13, 073027. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y. Work Measurement in OPEN Quantum System. Entropy 2022, 24, 180. https://doi.org/10.3390/e24020180
Xu Y. Work Measurement in OPEN Quantum System. Entropy. 2022; 24(2):180. https://doi.org/10.3390/e24020180
Chicago/Turabian StyleXu, Youyang. 2022. "Work Measurement in OPEN Quantum System" Entropy 24, no. 2: 180. https://doi.org/10.3390/e24020180
APA StyleXu, Y. (2022). Work Measurement in OPEN Quantum System. Entropy, 24(2), 180. https://doi.org/10.3390/e24020180