Entropy, Economics, and Criticality
Abstract
:1. Introduction
2. Criticality and Statistical Measures
3. Critical Transitions Are a Phenomena of Markets
4. Limitations and Future Directions
There is a close connection between agent computing in the positive social sciences and distributed computation in computer science, in which individual processors have heterogeneous information that they compute with and then communicate to other processors.
Funding
Data Availability Statement
Conflicts of Interest
References
- Kolmogorov, A.N. Three approaches to the definition of the concept “quantity of information”. Probl. Peredachi Informatsii 1965, 1, 3–11. [Google Scholar]
- Theil, H. On the use of information theory concepts in the analysis of financial statements. Manag. Sci. 1969, 15, 459–480. [Google Scholar] [CrossRef]
- Wilson, A.G. The use of entropy maximising models, in the theory of trip distribution, mode split and route split. J. Transp. Econ. Policy 1969, 3, 108–126. [Google Scholar]
- Georgescu-Roegen, N. The entropy law and the economic problem. In Valuing the Earth: Economics, Ecology, Ethics; MIT Press: Cambridge, MA, USA, 1993; pp. 75–88. [Google Scholar]
- Aoki, M. New Approaches to Macroeconomic Modeling. In Cambridge Books; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Harré, M.S. Information Theory for Agents in Artificial Intelligence, Psychology, and Economics. Entropy 2021, 23, 310. [Google Scholar] [CrossRef] [PubMed]
- Jakimowicz, A. The role of entropy in the development of economics. Entropy 2020, 22, 452. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.E.; Saravia, G. Information theory applied to econophysics: Stock market behaviors. Eur. Phys. J. B 2014, 87, 177. [Google Scholar] [CrossRef]
- Sornette, D. Critical market crashes. Phys. Rep. 2003, 378, 1–98. [Google Scholar]
- Crosato, E.; Nigmatullin, R.; Prokopenko, M. On critical dynamics and thermodynamic efficiency of urban transformations. R. Soc. Open Sci. 2018, 5, 180863. [Google Scholar] [CrossRef] [Green Version]
- Crosato, E.; Prokopenko, M.; Harré, M.S. The polycentric dynamics of Melbourne and Sydney: Suburb attractiveness divides a city at the home ownership level. Proc. R. Soc. A 2021, 477, 20200514. [Google Scholar] [CrossRef]
- Dinis, L.; Unterberger, J.; Lacoste, D. Phase transitions in optimal betting strategies. Europhys. Lett. 2020, 131, 60005. [Google Scholar] [CrossRef]
- Bossomaier, T.; Barnett, L.; Steen, A.; Harré, M.; d’Alessandro, S.; Duncan, R. Information flow around stock market collapse. Account. Financ. 2018, 58, 45–58. [Google Scholar] [CrossRef]
- Harré, M. Entropy and Transfer Entropy: The Dow Jones and the Build Up to the 1997 Asian Crisis. In Proceedings of the International Conference on Social Modeling and Simulation, Plus Econophysics Colloquium 2014; Springer: Cham, Switzerland, 2015; pp. 15–25. [Google Scholar]
- Harré, M.; Bossomaier, T. Phase-transition–like behaviour of information measures in financial markets. Europhys. Lett. 2009, 87, 18009. [Google Scholar] [CrossRef]
- Harré, M.S.; Eremenko, A.; Glavatskiy, K.; Hopmere, M.; Pinheiro, L.; Watson, S.; Crawford, L. Complexity Economics in a Time of Crisis: Heterogeneous Agents, Interconnections, and Contagion. Systems 2021, 9, 73. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Harré, M.; Olbrich, E.; Bertschinger, N.; Jost, J. Hysteresis effects of changing the parameters of noncooperative games. Phys. Rev. E 2012, 85, 036102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harré, M.S.; Atkinson, S.R.; Hossain, L. Simple nonlinear systems and navigating catastrophes. Eur. Phys. J. B 2013, 86, 289. [Google Scholar] [CrossRef]
- Glavatskiy, K.S.; Prokopenko, M.; Carro, A.; Ormerod, P.; Harré, M. Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large scale agent-based model. arXiv 2020, arXiv:2004.07571. [Google Scholar] [CrossRef]
- Evans, B.P.; Glavatskiy, K.; Harré, M.S.; Prokopenko, M. The impact of social influence in Australian real estate: Market forecasting with a spatial agent-based model. J. Econ. Interact. Coord. 2021, 22, 1–53. [Google Scholar] [CrossRef]
- Theil, H.; Chung, C. Information-theoretic measures of fit for univariate and multivariate linear regressions. Am. Stat. 1988, 42, 249–252. [Google Scholar]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; Van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Barnett, L.; Lizier, J.T.; Harré, M.; Seth, A.K.; Bossomaier, T. Information flow in a kinetic Ising model peaks in the disordered phase. Phys. Rev. Lett. 2013, 111, 177203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, H.; Kudo, K.; Nakamura, R.; Yamakawa, O.; Murata, T. Mutual information of Ising systems. Int. J. Theor. Phys. 1996, 35, 839–845. [Google Scholar] [CrossRef]
- Gourieroux, C.; Monfort, A. Statistics and Econometric Models; Cambridge University Press: Cambridge, UK, 1995; Volume 1. [Google Scholar]
- Prokopenko, M.; Lizier, J.T.; Obst, O.; Wang, X.R. Relating Fisher information to order parameters. Phys. Rev. E 2011, 84, 041116. [Google Scholar] [CrossRef] [Green Version]
- Prokopenko, M.; Barnett, L.; Harré, M.; Lizier, J.T.; Obst, O.; Wang, X.R. Fisher transfer entropy: Quantifying the gain in transient sensitivity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150610. [Google Scholar] [CrossRef]
- Onnela, J.P.; Chakraborti, A.; Kaski, K.; Kertesz, J. Dynamic asset trees and Black Monday. Phys. A Stat. Mech. Its Appl. 2003, 324, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Aleksiejuk, A.; Hołyst, J.A.; Stauffer, D. Ferromagnetic phase transition in Barabási–Albert networks. Phys. A Stat. Mech. Its Appl. 2002, 310, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Kostanjčar, Z.; Begušić, S.; Stanley, H.E.; Podobnik, B. Estimating tipping points in feedback-driven financial networks. IEEE J. Sel. Top. Signal Process. 2016, 10, 1040–1052. [Google Scholar] [CrossRef] [Green Version]
- Baruník, J.; Vosvrda, M. Can a stochastic cusp catastrophe model explain stock market crashes? J. Econ. Dyn. Control 2009, 33, 1824–1836. [Google Scholar] [CrossRef]
- Barunik, J.; Kukacka, J. Realizing stock market crashes: Stochastic cusp catastrophe model of returns under time-varying volatility. Quant. Financ. 2015, 15, 959–973. [Google Scholar] [CrossRef] [Green Version]
- Diks, C.; Wang, J. Can a stochastic cusp catastrophe model explain housing market crashes? J. Econ. Dyn. Control 2016, 69, 68–88. [Google Scholar] [CrossRef] [Green Version]
- Cobb, L. Stochastic catastrophe models and multimodal distributions. Syst. Res. Behav. Sci. 1978, 23, 360–374. [Google Scholar] [CrossRef]
- Wagenmakers, E.J.; Molenaar, P.C.; Grasman, R.P.; Hartelman, P.A.; van der Maas, H.L. Transformation invariant stochastic catastrophe theory. Phys. D Nonlinear Phenom. 2005, 211, 263–276. [Google Scholar] [CrossRef]
- Rosser, J.B. The rise and fall of catastrophe theory applications in economics: Was the baby thrown out with the bathwater? J. Econ. Dyn. Control 2007, 31, 3255–3280. [Google Scholar] [CrossRef]
- Scheffer, M.; Hirota, M.; Holmgren, M.; Van Nes, E.H.; Chapin, F.S. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. USA 2012, 109, 21384–21389. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Carpenter, S.R.; Lenton, T.M.; Bascompte, J.; Brock, W.; Dakos, V.; Van de Koppel, J.; Van de Leemput, I.A.; Levin, S.A.; Van Nes, E.H.; et al. Anticipating critical transitions. Science 2012, 338, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Bury, T.M.; Sujith, R.; Pavithran, I.; Scheffer, M.; Lenton, T.M.; Anand, M.; Bauch, C.T. Deep learning for early warning signals of tipping points. Proc. Natl. Acad. Sci. USA 2021, 118, e2106140118. [Google Scholar] [CrossRef]
- Boers, N.; Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl. Acad. Sci. USA 2021, 118, e2024192118. [Google Scholar] [CrossRef]
- Rozell, C.J.; Johnson, D.H. Examining methods for estimating mutual information in spiking neural systems. Neurocomputing 2005, 65, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Wollstadt, P.; Martínez-Zarzuela, M.; Vicente, R.; Díaz-Pernas, F.J.; Wibral, M. Efficient transfer entropy analysis of non-stationary neural time series. PLoS ONE 2014, 9, e102833. [Google Scholar] [CrossRef] [Green Version]
- Zbili, M.; Rama, S. A quick and easy way to estimate entropy and mutual information for neuroscience. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Lizier, J.T. JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI 2014, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Vicente, R.; Priesemann, V.; Wibral, M. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Wollstadt, P.; Lizier, J.T.; Vicente, R.; Finn, C.; Martinez-Zarzuela, M.; Mediano, P.; Novelli, L.; Wibral, M. IDTxl: The Information Dynamics Toolkit xl: A Python package for the efficient analysis of multivariate information dynamics in networks. arXiv 2018, arXiv:1807.10459. [Google Scholar] [CrossRef]
- Gallegati, M.; Keen, S.; Lux, T.; Ormerod, P. Worrying trends in econophysics. Phys. A Stat. Mech. Its Appl. 2006, 370, 1–6. [Google Scholar] [CrossRef]
- Zhu, R.; Hochstetter, J.; Loeffler, A.; Diaz-Alvarez, A.; Nakayama, T.; Lizier, J.T.; Kuncic, Z. Information dynamics in neuromorphic nanowire networks. Sci. Rep. 2021, 11, 13047. [Google Scholar] [CrossRef]
- Lotfi, N.; Feliciano, T.; Aguiar, L.A.; Silva, T.P.L.; Carvalho, T.T.; Rosso, O.A.; Copelli, M.; Matias, F.S.; Carelli, P.V. Statistical complexity is maximized close to criticality in cortical dynamics. Phys. Rev. E 2021, 103, 012415. [Google Scholar] [CrossRef]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364. [Google Scholar] [CrossRef]
- Girardi-Schappo, M. Brain criticality beyond avalanches: Open problems and how to approach them. J. Phys. Complex. 2021, 2, 031003. [Google Scholar] [CrossRef]
- Tadić, B.; Melnik, R. Self-Organised Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological, and Social Networks. Dynamics 2021, 1, 181–197. [Google Scholar] [CrossRef]
- Mirowski, P.; Somefun, K. Markets as evolving computational entities. J. Evol. Econ. 1998, 8, 329–356. [Google Scholar] [CrossRef]
- Axtell, R.L. Economics as distributed computation. In Meeting the Challenge of Social Problems via Agent-Based Simulation; Springer: Berlin/Heidelberg, Germany, 2003; pp. 3–23. [Google Scholar]
- Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Solé, R.; Moses, M.; Forrest, S. Liquid brains, solid brains. Philos. Trans. R. Soc. B 2019, 374, 20190040. [Google Scholar] [CrossRef] [PubMed]
- Biondo, A.E.; Pluchino, A.; Rapisarda, A. Micro and macro benefits of random investments in financial markets. Contemp. Phys. 2014, 55, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Bocher, R. Causal Entropic Forces, Narratives and Self-organisation of Capital Markets. J. Interdiscip. Econ. 2021, 30, 02601079211039321. [Google Scholar] [CrossRef]
- Turiel, J.D.; Aste, T. Self-organised criticality in high frequency finance: The case of flash crashes. arXiv 2021, arXiv:2110.13718. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harré, M.S. Entropy, Economics, and Criticality. Entropy 2022, 24, 210. https://doi.org/10.3390/e24020210
Harré MS. Entropy, Economics, and Criticality. Entropy. 2022; 24(2):210. https://doi.org/10.3390/e24020210
Chicago/Turabian StyleHarré, Michael S. 2022. "Entropy, Economics, and Criticality" Entropy 24, no. 2: 210. https://doi.org/10.3390/e24020210
APA StyleHarré, M. S. (2022). Entropy, Economics, and Criticality. Entropy, 24(2), 210. https://doi.org/10.3390/e24020210