Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model
Abstract
:1. Introduction
2. Methodology
2.1. Multiscale Geometric Analysis
2.2. Difference Image Generation
2.3. FLICM Model
3. Experimental Results and Discussion
3.1. Experimental Data
3.2. Analysis of the Difference Image
3.3. Experimental Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCT | Nonsubsampled contourlet transform |
FLICM | Fuzzy local information C-means clustering |
DI | Difference image |
SAR | Synthetic aperture radar |
NR | Neighborhood-based ratio |
GKIT | Generalization of Kittler and Illingworth thresholding |
PCAKM | Principal component analysis and K-means clustering |
NSCT-HMT | Nonsubsampled contourlet transform-Hidden Markov Tree |
PCANet | Principal component analysis network |
LR | Log-ratio |
MR | Mean-ratio |
NSP | Nonsubsampled pyramid |
NSDFB | Nonsubsampled directional filter bank |
LF | Low-frequency |
HF | High-frequency |
GaborTLC | Gabor wavelet and two-level clustering |
LMT | Logarithmic mean-based thresholding |
NRELM | Neighborhood-based ratio and extreme learning machine |
NRCR | Neighborhood-based ratio and collaborative representation |
CWNN | Convolutional-wavelet neural networks |
FN | False negative |
FP | False positive |
OE | Overall error |
PCC | Percentage correct classification |
KC | Kappa coefficient |
F1 | F1-score |
ROC | Receiver operating characteristics |
TPR | True positive rate |
FPR | False positive rate |
AUC | Area under the curve |
Ddist | Diagonal distance |
References
- Xu, H.; Ma, J.; Shao, Z. SDPNet: A deep network for pan-sharpening with enhanced information representation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4120–4134. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J. GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening. ISPRS J. Photogramm. Remote Sens. 2021, 172, 223–239. [Google Scholar] [CrossRef]
- Xu, H.; Le, Z.; Huang, J.; Ma, J. A cross-direction and progressive network for pan-sharpening. Remote Sens. 2021, 13, 3045. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Chen, C. Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Inf. Fusion 2020, 62, 110–120. [Google Scholar] [CrossRef]
- Tian, X.; Chen, Y.; Yang, C. A variational pansharpening method based on gradient sparse representation. IEEE Signal Processing Lett. 2020, 27, 1180–1184. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Wang, Z. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Ma, Y. Pairwise elastic net representation-based classification for hyperspectral image classification. Entropy 2021, 23, 956. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Pan, E.; Ma, Y. Spectral-spatial attention networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, Y.; Dai, X. Locality-constrained sparse representation for hyperspectral image classification. Inf. Sci. 2021, 546, 858–870. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Liu, X. Multilayer spectral-spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 99, 1–14. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Wang, Z. Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 851–865. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Vujadinovic, T. Change detection within remotely sensed satellite image time series via spectral analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Panuju, D.; Paull, D.; Griffin, A. Change detection techniques based on multispectral images for investigating land cover dynamics. Remote Sens. 2020, 12, 1781. [Google Scholar] [CrossRef]
- Li, H.; Yang, G.; Yang, W. Deep nonsmooth nonnegative matrix factorization network factorization network with semi-supervised learning for SAR image change detection. ISPRS J. Photogramm. Remote Sens. 2020, 160, 167–179. [Google Scholar] [CrossRef]
- Yang, G.; Li, H.; Wang, W. Unsupervised change detection based on a unified framework for weighted collaborative representation with RDDL and fuzzy clustering. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8890–8903. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; Liu, Z. Unsupervised change detection using fuzzy topology-based majority voting. Remote Sens. 2021, 13, 3171. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, K.; Zhou, G. Change scapsule network for optical remote sensing image change detection. Remote Sens. 2021, 13, 2646. [Google Scholar] [CrossRef]
- Xu, J.; Luo, C.; Chen, X. Remote sensing change detection based on multidirectional adaptive feature fusion and perceptual similarity. Remote Sens. 2021, 13, 3053. [Google Scholar] [CrossRef]
- He, Y.; Jia, Z.; Yang, J. Multispectral image change detection based on single-band slow feature analysis. Remote Sens. 2021, 13, 2969. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [Google Scholar] [CrossRef]
- Huo, J.; Mu, L. Fast change detection method for remote sensing image based on method of connected area labeling and spectral clustering algorithm. J. Appl. Remote Sens. 2021, 15, 016506. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, J.; Kuang, G. A change detection measure based on a likelihood ratio and statistical properties of SAR intensity images. Remote Sens. Lett. 2012, 3, 267–275. [Google Scholar] [CrossRef]
- Gong, M.; Yu, C.; Wu, Q. A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Xu, S.; Liao, Y.; Yan, X. Change detection in SAR images based on iterative Otsu. Eur. J. Remote Sens. 2020, 53, 331–339. [Google Scholar] [CrossRef]
- Geetha, R.; Kalaivani, S. Laplacian pyramid-based change detection in multitemporal SAR images. Eur. J. Remote Sens. 2019, 52, 463–483. [Google Scholar] [CrossRef] [Green Version]
- Celik, T.; Ma, K. Multitemporal image change detection using undecimated discrete wavelet transform and active contours. IEEE Trans. Geosci. Remote Sens. 2011, 49, 706–716. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Li, H.; Celik, T.; Longbotham, N. Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2458–2462. [Google Scholar]
- Chen, P.; Zhang, Y.; Jia, Z. Remote sensing image change detection based on NSCT-HMT model and its application. Sensors 2017, 17, 1295. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Dong, J.; Li, B. Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1792–1796. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J. Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4517–4529. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J. SAR image change detection based on multiscale capsule network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 484–488. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J. Transferred deep learning for sea ice change detection from synthetic-aperture radar images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1655–1659. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S.; Jian, M. DPFL-Nets: Deep pyramid feature learning networks for multiscale change detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, X.; Jiang, M. ADS-Net: An attention-based deeply supervised network for remote sensing image change detection. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102348. [Google Scholar] [CrossRef]
- Li, L.; Si, L.; Wang, L. A novel approach for multi-focus image fusion based on SF-PAPCNN and ISML in NSST domain. Multimed. Tools Appl. 2020, 79, 24303–24328. [Google Scholar] [CrossRef]
- Li, L.; Ma, H. Pulse coupled neural network-based multimodal medical image fusion via guided filtering and WSEML in NSCT domain. Entropy 2021, 23, 591. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Kalaiselvi, S.G. α-cut induced fuzzy deep neural network for change detection of SAR images. Appl. Soft Comput. 2020, 95, 106510. [Google Scholar] [CrossRef]
- Lou, X.; Jia, Z.; Yang, J. Change detection in SAR images based on the ROF model semi-implicit denoising method. Sensors 2019, 19, 1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krinidis, S.; Chatzis, V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Processing 2010, 19, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Sumaiya, M.; Kumari, R. Logarithmic mean-based thresholding for SAR image change detection. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1726–1728. [Google Scholar] [CrossRef]
- Gao, F.; Dong, J.; Li, B. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. J. Appl. Remote Sens. 2016, 10, 046019. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J. Sea ice change detection in SAR images based on collaborative representation. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7320–7323. [Google Scholar]
- Wang, T.; Kazak, J.; Han, Q. A framework for path-dependent industrial land transition analysis using vector data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Ramachandran, K. Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2017, 20, 169–185. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Li, X. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern Recognit. 2021, 109, 107598. [Google Scholar] [CrossRef]
Scenario (Data Set) | Location | Data | Event | Size | Satellite | Sensor Type |
---|---|---|---|---|---|---|
1 | Ottawa, Canada | May 1997 August 1997 | Flood | 290 350 | Radarsat-1 | SAR |
2 | Wenchuan, China | 3 March 2008 16 June 2008 | Earthquake | 442 301 | Radarsat-2 | SAR |
3 | Mexico | April 2000 May 2005 | Fire | 512 512 | Landsat-7 | Optical |
4 | Yambulla, Australia | 1 October 2015 6 February 2016 | Bushfire | 500 500 | Landsat-8 | Optical |
Methods | Ottawa | Wenchuan | Mexico | Yambulla | ||||
---|---|---|---|---|---|---|---|---|
AUC | Ddist | AUC | Ddist | AUC | Ddist | AUC | Ddist | |
LR | 0.9573 | 1.2829 | 0.9618 | 1.2701 | 0.9877 | 1.3467 | 0.9954 | 1.3815 |
MR | 0.9969 | 1.3828 | 0.9665 | 1.2953 | 0.9937 | 1.3689 | 0.9987 | 1.3980 |
NSCT | 0.9980 | 1.3857 | 0.9729 | 1.3063 | 0.9938 | 1.3681 | 0.9990 | 1.3986 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
LR_FLICM | 2588 | 224 | 2812 | 97.23 | 88.93 | 90.54 |
MR_FLICM | 340 | 896 | 1236 | 98.78 | 95.49 | 96.21 |
NSCT_FLICM | 658 | 366 | 1024 | 98.99 | 96.18 | 96.78 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
PCAKM | 1901 | 582 | 2483 | 97.55 | 90.49 | 91.93 |
GaborTLC | 2531 | 253 | 2784 | 97.26 | 89.07 | 90.66 |
LMT | 5266 | 23 | 5289 | 94.79 | 77.43 | 80.31 |
PCANet | 1011 | 839 | 1850 | 98.18 | 93.12 | 94.21 |
NRELM | 1157 | 578 | 1735 | 98.29 | 93.48 | 94.50 |
NRCR | 739 | 1900 | 2639 | 97.40 | 90.51 | 92.07 |
CWNN | 399 | 1208 | 1607 | 98.42 | 94.17 | 95.12 |
Proposed | 658 | 366 | 1024 | 98.99 | 96.18 | 96.78 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
PCAKM | 7111 | 939 | 8050 | 93.95 | 76.27 | 79.73 |
GaborTLC | 8155 | 688 | 8843 | 93.35 | 73.27 | 76.98 |
LMT | 9333 | 635 | 9968 | 92.51 | 69.11 | 73.19 |
PCANet | 5284 | 1437 | 6721 | 94.95 | 81.04 | 84.01 |
NRELM | 6492 | 873 | 7365 | 94.46 | 78.52 | 81.71 |
NRCR | 7638 | 713 | 8351 | 93.72 | 75.02 | 78.56 |
CWNN | 9720 | 578 | 10298 | 92.26 | 67.80 | 71.97 |
Proposed | 3612 | 2117 | 5729 | 95.69 | 84.51 | 87.09 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
PCAKM | 5543 | 759 | 6302 | 97.60 | 85.11 | 86.42 |
GaborTLC | 8515 | 296 | 8811 | 96.64 | 77.73 | 79.49 |
LMT | 5855 | 640 | 6495 | 97.52 | 84.53 | 85.87 |
PCANet | 4946 | 713 | 5659 | 97.84 | 86.77 | 87.95 |
NRELM | 3702 | 943 | 4645 | 98.23 | 89.43 | 90.41 |
NRCR | 3734 | 1252 | 4986 | 98.10 | 88.72 | 89.76 |
CWNN | 4491 | 1053 | 5544 | 97.89 | 87.23 | 88.39 |
Proposed | 3316 | 1223 | 4539 | 98.27 | 89.80 | 90.75 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
PCAKM | 2956 | 116 | 3072 | 98.77 | 92.86 | 93.54 |
GaborTLC | 6105 | 34 | 6139 | 97.54 | 84.83 | 86.15 |
LMT | 4571 | 60 | 4631 | 98.15 | 88.90 | 89.91 |
PCANet | 3979 | 134 | 4113 | 98.35 | 90.27 | 91.17 |
NRELM | 7325 | 33 | 7358 | 97.06 | 81.37 | 82.93 |
NRCR | 6348 | 31 | 6379 | 97.45 | 84.16 | 85.53 |
CWNN | 2629 | 153 | 2782 | 98.89 | 93.58 | 94.20 |
Proposed | 1782 | 227 | 2009 | 99.20 | 95.44 | 95.89 |
FN | FP | OE | PCC (%) | KC (%) | F1 (%) | |
---|---|---|---|---|---|---|
PCAKM | 4378 | 599 | 4977 | 96.97 | 86.18 | 87.91 |
GaborTLC | 6327 | 318 | 6644 | 96.20 | 81.22 | 83.32 |
LMT | 6256 | 340 | 6596 | 95.74 | 79.99 | 82.32 |
PCANet | 3805 | 781 | 4586 | 97.33 | 87.80 | 89.33 |
NRELM | 4669 | 607 | 5276 | 97.01 | 85.70 | 87.39 |
NRCR | 4615 | 974 | 5589 | 96.67 | 84.60 | 86.48 |
CWNN | 4310 | 748 | 5058 | 96.86 | 85.69 | 87.42 |
Proposed | 2342 | 983 | 3325 | 98.04 | 91.48 | 92.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Ma, H.; Jia, Z. Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model. Entropy 2022, 24, 291. https://doi.org/10.3390/e24020291
Li L, Ma H, Jia Z. Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model. Entropy. 2022; 24(2):291. https://doi.org/10.3390/e24020291
Chicago/Turabian StyleLi, Liangliang, Hongbing Ma, and Zhenhong Jia. 2022. "Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model" Entropy 24, no. 2: 291. https://doi.org/10.3390/e24020291
APA StyleLi, L., Ma, H., & Jia, Z. (2022). Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model. Entropy, 24(2), 291. https://doi.org/10.3390/e24020291