Mixedness, Coherence and Entanglement in a Family of Three-Qubit States
Abstract
:1. Introduction
2. The Three-Qubit System
3. The Linear Entropy and Degree of Coherence
4. The First-Order Correlation Function and Linear Entropy
5. The Second-Order Correlation Function and Linear Entropy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zernike, F. The concept of degree of coherence and its application to optical problems. Physica 1938, 5, 785–795. [Google Scholar] [CrossRef]
- Hanbury Brown, R.; Twiss, R.Q. A Test of a New Type of Stellar Interferometer on Sirius. Nature 1956, 178, 1046–1048. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. A 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Mehta, C.L.; Sudarshan, E.C.G. Relation between Quantum and Semiclassical Description of Optical Coherence. Phys. Rev. 1965, 138, B274–B280. [Google Scholar] [CrossRef]
- Peřina, J. Coherence of Light; Kluwer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Sun, L.; Li, G.; Gu, W.; Ficek, Z. Generating coherence and entanglement with a finite-size atomic ensemble in a ring cavity. New J. Phys. 2011, 13, 093019. [Google Scholar] [CrossRef]
- Sun, L.; Li, G.; Ficek, Z. First-order coherence versus entanglement in a nanomechanical cavity. Phys. Rev. A 2012, 85, 022327. [Google Scholar] [CrossRef] [Green Version]
- Bougouffa, S.; Ficek, Z. Evidence of indistinguishability and entanglement determined by the energy-time uncertainty principle in a system of two strongly coupled bosonic modes. Phys. Rev. A 2016, 93, 063848. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, Y.H.; Huang, J.; Huang, J.F.; Liao, J.Q. Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Phys. Rev. A 2021, 104, 053715. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 1997, 79, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.B.; Guo, G.C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett. 2000, 85, 2392–2395. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rieffel, E.G.; Polak, W.H. Quantum Computing: A Gentle Introduction; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Estarellas, M.P.; D’Amico, I.; Spiller, T.P. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A 2017, 95, 042335. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Wootters, W.K. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996, 76, 722. [Google Scholar] [CrossRef] [Green Version]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eible, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, Ş.K.; Bartkiewicz, K.; Liu, Y.X.; Miranowicz, A. Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit. Phys. Rev. A 2007, 76, 042325. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Rosales-Zárate, L.; Adesso, G.; Reid, M.D. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 2015, 115, 180502. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, S.; Hall, M.J.W.; Bennet, A.J.; Saunders, D.J.; Pryde, G.J. Experimental measurement-device-independent verification of quantum steering. Nat. Commun. 2015, 6, 5886. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, S.; Hiroshima, T. Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 2000, 62, 022310. [Google Scholar] [CrossRef] [Green Version]
- Munro, W.J.; James, D.F.V.; White, A.G.; Kwiat, P.G. Maximizing the entanglement of two mixed qubits. Phys. Rev. A 2001, 64, 030302. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.C.; Nemoto, K.; Goldbart, P.M.; Kwiat, P.G.; Munro, W.J.; Verstraete, F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 2003, 67, 022110. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S. Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A 2012, 85, 042319. [Google Scholar] [CrossRef] [Green Version]
- Paulson, K.; Satyanarayana, S. Bounds on mixedness and entanglement of quantum teleportation resources. Phys. Lett. A 2017, 381, 1134–1137. [Google Scholar] [CrossRef]
- Kalaga, J.K.; Leoński, W. Quantum steering borders in three-qubit systems. Quantum Inf. Process. 2017, 16, 175. [Google Scholar] [CrossRef]
- Ashrafpour, M.; Saghi, Z. Research Paper: Investigation of the Relationship of the Degree of Mixedness and Entanglement of the Bipartite Spin Coherent States. Iran. J. Appl. Phys. 2021, 11, 7–15. [Google Scholar] [CrossRef]
- Cheng, S.; Hall, M.J.W. Complementarity relations for quantum coherence. Phys. Rev. A 2015, 92, 042101. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.; Bera, M.N.; Dhar, H.S.; Pati, A.K. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness. Phys. Rev. A 2015, 91, 052115. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 2016, 93, 032136. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Dong, G.H.; Xiao, X.; Sun, C.P. Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 2016, 6, 32010. [Google Scholar] [CrossRef] [Green Version]
- Dixit, K.; Naikoo, J.; Banerjee, S.; Alok, A.K. Study of coherence and mixedness in meson and neutrino systems. Eur. Phys. J. C 2019, 79, 96. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, C.; Ding, Z.; Shi, F.; Du, J.; Byrnes, T. Basis-independent quantum coherence and its distribution. Ann. Phys. 2019, 409, 167906. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Li, Y.; Fan, H. Quantum coherence and correlations in quantum system. Sci. Rep. 2015, 5, 10922. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yadin, B.; Girolami, D.; Vedral, V.; Gu, M. Converting Coherence to Quantum Correlations. Phys. Rev. Lett. 2016, 116, 160407. [Google Scholar] [CrossRef]
- Killoran, N.; Steinhoff, F.E.S.; Plenio, M.B. Converting Nonclassicality into Entanglement. Phys. Rev. Lett. 2016, 116, 080402. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, E.; Hsieh, M.H. Relating the Resource Theories of Entanglement and Quantum Coherence. Phys. Rev. Lett. 2016, 117, 020402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, S.; Adhikari, S.; Majumdar, A.S. Coherence and entanglement under three-qubit cloning operations. Quantum Inf. Process. 2018, 18, 36. [Google Scholar] [CrossRef] [Green Version]
- Shamsi, Z.H.; Noreen, A.; Mushtaq, A. Analysis of quantum coherence for localized fermionic systems in an accelerated motion. Results Phys. 2020, 19, 103302. [Google Scholar] [CrossRef]
- Fei, J.; Zhou, D.; Shim, Y.; Oh, S.; Hu, X.; Friesen, M. Mediated gates between spin qubits. Phys. Rev. A 2012, 86, 062328. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.S.; Mahmood, S.; Razmi, M.S.K.; Zubairy, M.S. Interaction of two two-level atoms with a single-mode quantized radiation field. J. Opt. Soc. Am. B 1988, 5, 1312–1316. [Google Scholar] [CrossRef]
- Ficek, Z.; Tanaś, R. Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 2002, 372, 369–443. [Google Scholar] [CrossRef] [Green Version]
- Leoński, W.; Kowalewska-Kudłaszyk, A. Quantum Scissors—Finite-Dimensional States Engineering. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 56, pp. 131–185. [Google Scholar] [CrossRef] [Green Version]
- Leoński, W.; Tanaś, R. Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 1994, 49, R20–R23. [Google Scholar] [CrossRef]
- Leoński, W.; Miranowicz, A. Kerr nonlinear coupler and entanglement. J. Opt. B 2004, 6, S37–S42. [Google Scholar] [CrossRef] [Green Version]
- Acín, A.; Andrianov, A.; Jané, E.; Tarrach, R. Three-qubit pure-state canonical forms. J. Phys. A Math. Gen. 2001, 34, 6725–6739. [Google Scholar] [CrossRef]
- Sabin, C.; Garcia-Alcaine, G. A classification of entanglement in three-qubit systems. Eur. Phys. J. D 2008, 48, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Enríquez, M.; Delgado, F.; Życzkowski, K. Entanglement of Three-Qubit Random Pure States. Entropy 2018, 20, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.L.; Song, W. Teleportation of a two-particle entangled state via W class states. Phys. A Stat. Mech. Its Appl. 2005, 347, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Qiu, D. The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 2007, 40, 10871–10885. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Sanders, B.C. Generalized W-class state and its monogamy relation. J. Phys. A Math. Theor. 2008, 41, 495301. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Gangopadhyay, S. A Study of the Efficiency of the Class of W-States as a Quantum Channel. Int. J. Theor. Phys. 2009, 48, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Chitambar, E.; Lo, H.K. Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A 2011, 84, 052301. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zheng, Z.J.; Zhu, C.J. Monogamy and polygamy for generalized W-class states using Rényi-α entropy. Phys. Rev. A 2020, 102, 062428. [Google Scholar] [CrossRef]
- Shi, X.; Chen, L. Monogamy relations for the generalized W-class states beyond qubits. Phys. Rev. A 2020, 101, 032344. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.S.; Tomita, A. Teleportation of an unknown state by W state. Phys. Lett. A 2002, 296, 161–164. [Google Scholar] [CrossRef]
- Joo, J.; Park, Y.J. Comment on “Teleportation of an unknown state by W states”: [Phys. Lett. A 296 (2002) 161]. Phys. Lett. A 2002, 300, 324–326. [Google Scholar] [CrossRef]
- Shi, B.S.; Tomita, A. Reply to “Comment on: Teleportation of an unknown state by W state”: [Phys. Lett. A 300 (2002) 324]. Phys. Lett. A 2002, 300, 538–539. [Google Scholar] [CrossRef]
- Yang, X.; Bai, M.Q.; Mo, Z.W. Controlled Dense Coding with the W State. Int. J. Theor. Phys. 2017, 56, 3525–3533. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Wang, F.; Luo, M.X. Efficient Superdense Coding with W States. Int. J. Theor. Phys. 2018, 57, 1935–1941. [Google Scholar] [CrossRef]
- Roy, S.; Chanda, T.; Das, T.; Sen(De), A.; Sen, U. Deterministic quantum dense coding networks. Phys. Lett. A 2018, 382, 1709–1715. [Google Scholar] [CrossRef] [Green Version]
- Jian, W.; Quan, Z.; Chao-Jing, T. Quantum Secure Communication Scheme with W State. Commun. Theor. Phys. 2007, 48, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B.; Wen, Q.Y.; Guo, F.Z.; Sun, Y.; Xu, G.; Zhu, F.C. Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 2008, 6, 899–906. [Google Scholar] [CrossRef]
- Svozilík, J.; Vallés, A.; Peřina, J.; Torres, J.P. Revealing Hidden Coherence in Partially Coherent Light. Phys. Rev. Lett. 2015, 115, 220501. [Google Scholar] [CrossRef] [Green Version]
- Kalaga, J.K.; Leoński, W.; Peřina, J. Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A 2018, 97, 042110. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef] [Green Version]
- Gerry, C.C.; Knight, P.L. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Walls, D.F.; Milburn, G.J. Quantum Optics, 2nd ed.; Springer: Berlin/Heidelberg, Gemany, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaga, J.K.; Leoński, W.; Szczȩśniak, R.; Peřina, J., Jr. Mixedness, Coherence and Entanglement in a Family of Three-Qubit States. Entropy 2022, 24, 324. https://doi.org/10.3390/e24030324
Kalaga JK, Leoński W, Szczȩśniak R, Peřina J Jr. Mixedness, Coherence and Entanglement in a Family of Three-Qubit States. Entropy. 2022; 24(3):324. https://doi.org/10.3390/e24030324
Chicago/Turabian StyleKalaga, Joanna K., Wiesław Leoński, Radosław Szczȩśniak, and Jan Peřina, Jr. 2022. "Mixedness, Coherence and Entanglement in a Family of Three-Qubit States" Entropy 24, no. 3: 324. https://doi.org/10.3390/e24030324
APA StyleKalaga, J. K., Leoński, W., Szczȩśniak, R., & Peřina, J., Jr. (2022). Mixedness, Coherence and Entanglement in a Family of Three-Qubit States. Entropy, 24(3), 324. https://doi.org/10.3390/e24030324