Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series
Abstract
:1. Introduction
2. Related Works
2.1. Prediction Methods Based on Machine Learning
2.2. Decomposition and Prediction Methods
- An automatic mechanism was designed for the decomposition process of VMD, in which the criteria are determined based on the entropy and frequency to determine the number of subsequences and the dual decomposition parts.
- A general framework was constructed to integrate the dual decomposition mechanism and deep networks for time series prediction. The integrated deep model effectively solves the prediction issue with nonstationary time series.
3. Deep Prediction Model with Dual Decomposition
3.1. Dual Decomposition Criteria in VMD
3.1.1. Decomposition Method of VMD
Algorithm 1: VMD |
For |
Initialization |
For n = 1; n < N; n++; |
Update |
If |
break; |
End For |
End For |
3.1.2. Criteria for the Number of Components
3.1.3. Criteria for Dual Decomposition
3.2. Deep Prediction Model
3.2.1. Basic Deep Network of GRU
3.2.2. Framework of the Deep Prediction Model with Dual Decomposition
4. Experiment and Result
4.1. Experimental Setting and Data Set
4.2. Results
4.2.1. Test on the Number of Decomposition Components
4.2.2. Test of Dual Decomposition
4.2.3. Comparison of Contrast Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Li, Q.; Yu, J.; Wang, L.; Xie, J.; Shi, S. Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network. Int. J. Remote Sens. 2020, 41, 3368–3389. [Google Scholar] [CrossRef]
- Liu, L.; Tianyao, J.; Mengshi, L.I.; Chen, Z.; Qinghua, W. Short-term local prediction of wind speed and wind power based on singular spectrum analysis and locality-sensitive hashing. Mod. Power Syst. 2018, 6, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Tang, L.; Zhang, S.; Wang, H. Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing 2018, 285, 188–195. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Sun, Q.; Jin, X.; Wang, X.; Su, T.; Kong, J. Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere Based on the Fusion Network. Int. J. Environ. Res. Public Health 2019, 16, 3788. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jin, X.; Wang, X.; Wang, X.; Xu, J. Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis. Int. J. Environ. Res. Public Health 2020, 17, 360. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Bai, Y.; Wang, X.; Wang, L.; Jin, X.; Sun, Q. Group decision-making support for sustainable governance of algal bloom in urban lakes. Sustainability 2020, 12, 1494. [Google Scholar] [CrossRef] [Green Version]
- Rojas, I.; Valenzuela, O.; Rojas, F.; Guillén, A.; Herrera, L.J.; Pomares, H.; Marquez, L.; Pasadas, M. Soft-computing techniques and arma model for time series prediction. Neurocomputing 2008, 71, 519–537. [Google Scholar] [CrossRef]
- Torres, J.L.; Garcia, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, J.; Wang, J.; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl. Energy 2010, 87, 3606–3610. [Google Scholar] [CrossRef]
- Bin, L.I.; Yi-Bin, L.I. Chaotic time series prediction based on elm learning algorithm. J. Tianjin Univ. 2011, 44, 701–704. [Google Scholar]
- Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet Decomposition and Convolutional LSTM Networks Based Improved Deep Learning Model for Solar Irradiance Forecasting. Appl. Sci. 2018, 8, 1286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.; Kong, C.; Chen, B. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic. Energy Convers. Manag. 2020, 203, 112254. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, G.; Liu, H.; Liu, F.; Du, P. A Hybrid Forecasting Method for Solar Output Power Based on Variational Mode Decomposition, Deep Belief Networks and Auto-Regressive Moving Average. Appl. Sci. 2018, 8, 1901. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chang, W.; Yang, H. Monthly Mean Meteorological Temperature Prediction Based on VMD-DSE and Volterra Adaptive Model. Adv. Meteorol. 2020, 2020, 8385416. [Google Scholar] [CrossRef]
- Cadzow, J.A. ARMA Time Series Modeling: An Effective Method. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 49–58. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Shi, C.; Xiao, B. Short-term cloud coverage prediction using the ARIMA time series model. Remote Sens. Lett. 2018, 9, 274–283. [Google Scholar] [CrossRef]
- Garcia, R.C.; Contreras, J.; Akkeren, M.V.; Garcia, J.B.C. A garch forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 2005, 20, 867–874. [Google Scholar] [CrossRef]
- Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Bai, Y.-T.; Wang, X.-Y.; Jin, X.-B.; Zhao, Z.-Y.; Zhang, B.-H. A Neuron-Based Kalman Filter with Nonlinear Autoregressive Model. Sensors 2020, 20, 299. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Zhou, S.H.; Liu, Q.; Liu, X.; Yin, J. Financial time series prediction using 2,1rf-elm. Neurocomputing 2017, 277, 176–186. [Google Scholar] [CrossRef]
- Lin, J.; Cheng, C.; Chau, K. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599–612. [Google Scholar] [CrossRef]
- Amjady, N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans. Power Syst. 2006, 21, 887–896. [Google Scholar] [CrossRef]
- Yang, C.; Qiao, J.; Wang, L.; Zhu, X. Dynamical regularized echo state network for time series prediction. Neural Comput. Appl. 2019, 31, 6781–6794. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2017, 8, 6085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochreiter, S.; Schmidhuber, J. LSTM can Solve Hard Long Time Lag Problems. Adv. Neural Inf. Process. Syst. 1996, 473–479. [Google Scholar]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2017, 270, 654–669. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model. Sensors 2020, 20, 1334. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Zhou, H.; Xie, H.; Wu, M.; Nakanishi, Y.; Yokoyama, R. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting. Neurocomputing 2019, 365, 54–61. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; Mcrae, J.E.; Terpenning, I. Stl: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Qin, L.; Li, W.; Li, S. Effective passenger flow forecasting using STL and ESN based on two improvement strategies. Neurocomputing 2019, 356, 244–256. [Google Scholar] [CrossRef]
- Qiao, W.; Tian, W.; Tian, Y.; Yang, Q.; Wang, Y.; Zhang, J. The Forecasting of PM2.5 Using a Hybrid Model Based on Wavelet Transform and an Improved Deep Learning Algorithm. IEEE Access 2019, 7, 142814–142825. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Zhao, B.; Ji, W.; Jing, X.; He, Y. Short-Term Electricity Load Forecasting Model Based on EMD-GRU with Feature Selection. Energies 2019, 12, 1140. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, J.; Long, Z.; Chen, Y. A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting. Energies 2018, 11, 1068. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Niu, D.; Sun, L.; Zhen, H.; Xu, X. Wind power short-term forecasting hybrid model based on ceemd-se method. Processes 2019, 7, 843. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Integrated Predictor Based on Decomposition Mechanism for PM2.5 Long-Term Prediction. Appl. Sci. 2019, 9, 4533. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.B.; Yang, N.X.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Deep hybrid model based on emd with classification by frequency characteristics for long-term air quality prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.-J.; Feng, Z.-K.; Chen, Y.-B.; Zhang, H.-R.; Cheng, C.-T. Annual Streamflow Time Series Prediction Using Extreme Learning Machine Based on Gravitational Search Algorithm and Variational Mode Decomposition. J. Hydrol. Eng. 2020, 25, 04020008. [Google Scholar] [CrossRef]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, J.N.; Jiang, Z.; Zhang, L. Study of the correlation coefficients in mathematical statistics. Math. Pract. Theory 2009, 39, 102–107. [Google Scholar]
- Kong, J.; Wang, H.; Wang, X.; Jin, X.; Fang, X.; Lin, S. Multi-stream Hybrid Architecture Based on Cross-level Fusion Strategy for Fine-grained Crop Species Recognition in Precision Agriculture. Comput. Electron. Agric. 2021, 185, 106134. [Google Scholar] [CrossRef]
- Kong, J.; Yang, C.; Wang, J.; Wang, X.; Zuo, M.; Jin, X.; Lin, S. Deep-stacking network approach by multisource data mining for hazardous risk identification in IoT-based intelligent food management systems. Comput. Intell. Neurosci. 2021, 2021, 1194565. [Google Scholar] [CrossRef]
- Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-learning Forecasting Method for Electric Power Load Via Attention-based encoder-decoder With Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Zuo, M.; Zhang, Q.C.; Lin, S. Deep-Learning Temporal Predictor via Bi-directional Self-attentive Encoder-decoder framework for IOT-based Environmental Sensing in Intelligent Greenhouse. Agriculture 2021, 11, 802. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. Crop Deep: The Crop Vision Dataset for Deep-learning-based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data. Mathematics 2022, 10, 610. [Google Scholar] [CrossRef]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A Variational Bayesian deep network with data self-screening layer for massive time-series data forecasting. Entropy 2022, 24, 335. [Google Scholar] [CrossRef]
- Jin, X.B.; Zhang, J.S.; Kong, J.L.; Su, T.L.; Bai, Y.T. A Reversible Automatic Selection Normalization (RASN) Deep Network for Predicting in the Smart Agriculture System. Agronomy 2022, 2, 591. [Google Scholar] [CrossRef]
Layer | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
RMSE | 34.4928 | 28.5985 | 22.2981 | 18.2552 | 18.8259 |
Time(s) | 479.7493 | 573.4552 | 639.6171 | 734.5878 | 931.3032 |
Layer | 8 | 9 | 10 | 11 | 12 |
RMSE | 18.1537 | 18.0919 | 18.6195 | 18.5581 | 17.8504 |
Time(s) | 1083.2551 | 1155.3032 | 1332.4787 | 1460.2881 | 1614.4549 |
Different Decomposition Situations | RMSE | MAE | R2 | CC |
---|---|---|---|---|
First decomposition | 18.2552 | 12.2644 | 0.8975 | 0.9527 |
IMF 1 to dual decomposition | 17.8887 | 11.9822 | 0.9016 | 0.9548 |
IMF 1–2 to dual decomposition | 16.9522 | 11.7535 | 0.9116 | 0.9648 |
IMF 1–3 to dual decomposition | 15.4507 | 11.3111 | 0.9266 | 0.9693 |
IMF 1–4 to dual decomposition | 15.1434 | 11.0344 | 0.9295 | 0.9713 |
Model | RMSE | MAE | R2 | CC |
---|---|---|---|---|
RNN | 51.3712 | 36.2261 | 0.1884 | 0.4879 |
LSTM | 52.9843 | 36.3533 | 0.1366 | 0.4512 |
GRU | 49.9043 | 33.0322 | 0.2341 | 0.5175 |
Decomposition-ARIMA-GRU-GRU | 49.6151 | 33.4335 | 0.2429 | 0.5136 |
EMDCNN-GRU | 43.5485 | 33.7525 | 0.4167 | 0.6663 |
Dual Decomposition | 15.1434 | 11.0344 | 0.9295 | 0.9713 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Bai, Y.; Jin, X.; Wang, X.; Su, T.; Kong, J. Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series. Entropy 2022, 24, 360. https://doi.org/10.3390/e24030360
Shi Z, Bai Y, Jin X, Wang X, Su T, Kong J. Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series. Entropy. 2022; 24(3):360. https://doi.org/10.3390/e24030360
Chicago/Turabian StyleShi, Zhigang, Yuting Bai, Xuebo Jin, Xiaoyi Wang, Tingli Su, and Jianlei Kong. 2022. "Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series" Entropy 24, no. 3: 360. https://doi.org/10.3390/e24030360
APA StyleShi, Z., Bai, Y., Jin, X., Wang, X., Su, T., & Kong, J. (2022). Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series. Entropy, 24(3), 360. https://doi.org/10.3390/e24030360