A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes
Abstract
:1. Introduction
2. Model and Notations
- denotes a family of partitions of the domain into nonoverlapping mesh cells, and . For , , and denote the cell boundary, diameter (the maximum distance between any two points in K) and measure, respectively. Besides, is the mesh sizes;
- is a finite family of disjoint edges in such that for , is a line segment whose measure is defined as . Let and . For , there exists a subset of such that . denotes the unit vector normal to outward to K;
- is a set of points defined as cell centers, where ;
- is also a set of point, where represents the set of vertices of cell K, where are oriented in a counter clockwise direction. is the number of vertex for cell K.
3. Methods
3.1. Construction of One-Sided Flux
3.2. A Unique Definition of the Facet Flux
3.3. Interpolation of the Auxiliary Variables
3.4. The Finite Volume Scheme
Algorithm 1 Picard method. |
|
Algorithm 2 Anderson acceleration of Picard method. |
4. Theoretical Results
4.1. The Positivity-Preserving
- All diagonal elements of matrix are greater than zero.
- All off-diagonal elements of matrix are not less than zero.
- The sum of each column of matrix is greater than zero.
4.2. The Compatibility
4.3. The Existence of Solution
5. Numerical Results
- -
- itn: average number of linear iterations;
- -
- nitn: average number of nonlinear Picard iterations;
- -
- : minimal value of the numerical solution E;
- -
- : minimal value of the numerical solution T.
5.1. Accuracy Test
5.2. Results without Flux Limiter
5.3. Results with Flux Limiter
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mousseau, V.; Knoll, D.; Rider, W. Physics-based preconditioning and the Newton-Krylov method for nonequilibrium radiation diffusion. J. Comput. Phys. 2000, 160, 743–765. [Google Scholar] [CrossRef]
- Knoll, D.; Rider, W.; Olson, G. An efficient nonlinear solution method for nonequilibrium radiation diffusion. J. Quant. Spectrosc. Radiat. 1999, 63, 15–29. [Google Scholar] [CrossRef]
- Szilard, R.; Pomraning, G. Numerical transport and diffusion methods in radiative transfer. Nucl. Sci. Eng. 1992, 112, 256–269. [Google Scholar] [CrossRef]
- Knoll, D.; Keyes, D. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J. Comput. Phys. 2004, 193, 357–397. [Google Scholar] [CrossRef] [Green Version]
- Rider, W.; Knoll, D.; Olson, G. A multigrid Newton-Krylov method for multimaterial equilibrium radiation diffusion. J. Comput. Phys. 1999, 152, 164–194. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Yu, X. The preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations. J. Comput. Appl. Math. 2014, 255, 60–73. [Google Scholar] [CrossRef]
- Mousseau, V.; Knoll, D. New physics-based preconditioning of implicit methods for nonequilibrium radiation diffusion. J. Comput. Phys. 2003, 190, 42–51. [Google Scholar] [CrossRef]
- Knoll, D.; Chacon, L.; Margolin, L.; Mousseau, V. On balanced approximations for time integration of multiple time scale systems. J. Comput. Phys. 2003, 185, 583–611. [Google Scholar] [CrossRef]
- Lowrie, R.B. Acomparison of implicit time integration methods for nonlinear relaxation and diffusion. J. Comput. Phys. 2004, 196, 566–590. [Google Scholar] [CrossRef]
- Ober, C.; Shadid, N. Studies on the accuracy of time-integration methods for the radiation-diffusion equations. J. Comput. Phys. 2004, 195, 743–772. [Google Scholar] [CrossRef]
- Knoll, D.; Lowrie, R.; Morel, J. Numerical analysis of time integration errors for nonequilibrium radiation diffusion. J. Comput. Phys. 2007, 226, 1332–1347. [Google Scholar] [CrossRef]
- Oslon, G. Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization. J. Comput. Phys. 2007, 226, 1181–1195. [Google Scholar]
- Knoll, D.; Rider, W.; Olson, G. Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion. J. Quant. Spectrosc. Radiat. 2001, 70, 25–36. [Google Scholar] [CrossRef]
- Sheng, Z.; Yue, J.; Yuan, G. Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 2009, 31, 2915–2934. [Google Scholar] [CrossRef]
- Sheng, Z.; Yue, J.; Yuan, G. Monotone finite volume schemes for diffusion equations on distorted quadrilateral meshes. LNCS 2015, 1, 413–418. [Google Scholar]
- Zhao, X.; Chen, Y.; Gao, Y.; Yu, C.; Li, Y. Finite volume element methods for nonequilibrium radiation diffusion equations. Int. J. Numer. Meth. Fluids 2013, 73, 1059–1080. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y. Monotone finite point method for nonequilibrium radiation diffusion equations. BIT Numer. Math. 2016, 56, 659–679. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. An implicit unified gas kinetic scheme for radiative transfer with equilibrium and nonequilibrium diffusive limits. Comput. Phys. Commun. 2017, 22, 889–912. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, J. A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 2015, 37, 420–438. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, J. A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes. Int. J. Numer. Meth. Fluids 2011, 67, 2157–2183. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wu, J.; Gao, Z. A family of linearity-preserving schemes for anisotropic diffusion problems on general grids. J. Comput. Theor. Trans. 2016, 46, 1–23. [Google Scholar] [CrossRef]
- Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y. Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems. SIAM J. Sci. Comput. 2013, 35, A1120–A1136. [Google Scholar] [CrossRef]
Mesh | norm | nitn | itn | |||
---|---|---|---|---|---|---|
Mesh1 | 1.000 | 0.1778 | 1.204 | 7.121 | 19.424 | 4.571 |
Mesh2 | 9.999 | 0.1778 | 1.207 | 7.391 | 19.567 | 5.435 |
Mesh3 | 9.594 | 0.1767 | 1.211 | 7.684 | 20.376 | 1.742 |
Mesh | ||||||
---|---|---|---|---|---|---|
Mesh1 | 21,363 | 19,506 | 16,872 | 15,783 | 15,471 | 15,471 |
Mesh2 | 22,173 | 20,229 | 17,175 | 15,759 | 15,753 | 15,753 |
Mesh3 | 23,052 | 20,937 | 17,298 | 16,241 | 16,239 | 16,239 |
Mesh | norm | nitn | itn | |||
---|---|---|---|---|---|---|
Mesh1 | 1.000 | 0.1778 | 1.169 | 7.427 | 18.671 | 1.065 |
Mesh2 | 9.911 | 0.1779 | 1.170 | 7.549 | 18.285 | 6.337 |
Mesh3 | 9.947 | 0.1772 | 1.168 | 8.370 | 21.054 | 7.436 |
Mesh | ||||||
---|---|---|---|---|---|---|
Mesh1 | 44,562 | 42,876 | 37,170 | 33,390 | 33,372 | 33,368 |
Mesh2 | 45,294 | 43,932 | 38,652 | 36,006 | 35,151 | 35,144 |
Mesh3 | 50,220 | 47,484 | 42,222 | 39,361 | 37,281 | 37,275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Peng, G.; Gao, Z. A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes. Entropy 2022, 24, 382. https://doi.org/10.3390/e24030382
Yang D, Peng G, Gao Z. A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes. Entropy. 2022; 24(3):382. https://doi.org/10.3390/e24030382
Chicago/Turabian StyleYang, Di, Gang Peng, and Zhiming Gao. 2022. "A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes" Entropy 24, no. 3: 382. https://doi.org/10.3390/e24030382
APA StyleYang, D., Peng, G., & Gao, Z. (2022). A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes. Entropy, 24(3), 382. https://doi.org/10.3390/e24030382