The Structure and First-Passage Properties of Generalized Weighted Koch Networks
Abstract
:1. Introduction
2. The Generalized Weighted Koch Network
3. Topological Properties and ATT
3.1. Degree Distribution
3.2. Clustering Coefficient
3.3. Diameter
3.4. Average Weighted Shortest Path
3.5. ATT on Random Walk with Weight
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Values of A1–A6
Appendix B. The Values of B1–B6
References
- Al-Tarawneh, A.; Al-Saraireh, J. Efficient detection of hacker community based on twitter data using complex networks and machine learning algorithm. J. Intell. Fuzzy Syst. 2021, 40, 12321–12337. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Guo, Y.; Xie, Y. Evolutionary dynamics of cooperation with the celebrity effect in complex networks. Chaos 2021, 31, 013130. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, H.; Zeng, C.; Xue, Y. Scale-free and small-world properties of a multiple-hub network with fractal structure. Phys. A Stat. Mech. Its Appl. 2020, 558, 125001. [Google Scholar] [CrossRef]
- Pi, X.; Tang, L.; Chen, X. A directed weighted scale-free network model with an adaptive evolution mechanism. Phys. A Stat. Mech. Its Appl. 2021, 572, 125897. [Google Scholar] [CrossRef]
- Rak, R.; Rak, E. The Fractional Preferential Attachment Scale-Free Network Model. Entropy 2020, 22, 509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J.; Huang, G.Q. Efficiency and robustness of weighted air transport networks. Transp. Res. Part E Logist. Transp. Rev. 2019, 122, 14–26. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Liu, J. Neural Network With Multiple Connection Weights. Pattern Recognit. 2020, 107, 107481. [Google Scholar] [CrossRef]
- Erdos, P.; Renyi, A. On Random Graphs I. Publ. Math. 1959, 4, 3286–3291. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 5439, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Lee, D.S.; Kahng, B. First passage time for random walks in heterogeneous networks. Phys. Rev. Lett. 2012, 109, 088701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.H.; Zhao, S.Y.; Chen, X.Y. Community Detection Algorithm Based on Random Walk of Signal Propagation with Bias. Comput. Sci. 2019, 46, 45–55. [Google Scholar] [CrossRef]
- Defrenne, Y.; Zhdankin, V.; Ramanna, S.; Ramaswamy, S.; Ramarao, B.V. The dual phase moisture conductivity of fibrous materials using random walk techniques in X-ray microcomputed tomographic structures. Chem. Eng. Sci. 2018, 195, 565–577. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Julaiti, A.; Hou, B.Y.; Zhang, H.J.; Chen, G.R. Mean first-passage time for random walks on undirected networks. Eur. Phys. J. B—Condens. Matter 2011, 84, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, Z.Z. Random walks in weighted networks with a perfect trap: An application of laplacian spectra. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2013, 87, 062140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelali, M.; Kurtz, C.; Puissant, A.; Vincent, N. From pixels to random walk based segments for image time series deep classification. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, Zhongshan, China, 19–23 October 2020. [Google Scholar]
- Baum, D.; Weaver, J.C.; Zlotnikov, I.; Knötel, D.; Tomholt, L.; Dean, M.N. High-throughput segmentation of tiled biological structures using random walk distance transforms. Integr. Comp. Biol. 2019, 59, 1700–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Gui, H.; Luo, Z.; Li, D. Matching for navigation map building for automated guided robot based on laser navigation without a reflector. Ind. Robot 2019, 46, 17–30. [Google Scholar] [CrossRef]
- Xie, P.C.; Lin, Y.; Zhang, Z.Z. Spectrum of walk matrix for Koch network and its application. J. Chem. Phys. 2015, 142, 175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Gao, S.Y.; Xie, W.L. Impact of degree heterogeneity on the behavior of trapping in Koch networks. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, M.F.; Chen, D.D.; Dong, Y.J.; Liu, J. Scaling of average receiving time and average weighted shortest path on weighted Koch networks. Phys. A Stat. Mech. Its Appl. 2012, 391, 6165–6173. [Google Scholar] [CrossRef]
- Hou, B.Y.; Zhang, H.J.; Liu, L. Expanded Koch networks: Structure and trapping time of random walks. Eur. Phys. J. B 2013, 64, 156. [Google Scholar] [CrossRef]
- Ye, D.D.; Dai, M.F.; Sun, Y.Q.; Shao, S.; Xie, Q. Average receiving scaling of the weighted polygon Koch networks with the weight-dependent walk. Phys. A Stat. Mech. Its Appl. 2016, 458, 1–8. [Google Scholar] [CrossRef]
- Del Genio, C.I.; Gross, T.; Bassler, K.E. All scale-free network are sparse. Phys. Rev. Lett. 2011, 107, 178701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabasi, A.L. Scale-free network. Sci. Am. 2003, 288, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M. Mean clustering coefficient-on clustering measures for small-world networks. New J. Phys. 2008, 10, 083042. [Google Scholar] [CrossRef]
- Carletti, T.; Righi, S. Weighted Fractal Networks. Phys. A Stat. Mech. Its Appl. 2009, 389, 2134–2142. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Dai, M.F.; Xi, L.F. Scaling of average weighted shortest path and average receiving time on weighted hierarchical networks. Phys. A Stat. Mech. Its Appl. 2014, 407, 110–118. [Google Scholar] [CrossRef]
t | ||||
---|---|---|---|---|
0 | 2 | |||
1 | ||||
⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
t | s | s |
t | |||
---|---|---|---|
0 | 1 | ||
1 | |||
⋯ | ⋯ | ⋯ | ⋯ |
⋯ | ⋯ | ⋯ | ⋯ |
t | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Zhang, M.; Yao, B. The Structure and First-Passage Properties of Generalized Weighted Koch Networks. Entropy 2022, 24, 409. https://doi.org/10.3390/e24030409
Su J, Zhang M, Yao B. The Structure and First-Passage Properties of Generalized Weighted Koch Networks. Entropy. 2022; 24(3):409. https://doi.org/10.3390/e24030409
Chicago/Turabian StyleSu, Jing, Mingjun Zhang, and Bing Yao. 2022. "The Structure and First-Passage Properties of Generalized Weighted Koch Networks" Entropy 24, no. 3: 409. https://doi.org/10.3390/e24030409
APA StyleSu, J., Zhang, M., & Yao, B. (2022). The Structure and First-Passage Properties of Generalized Weighted Koch Networks. Entropy, 24(3), 409. https://doi.org/10.3390/e24030409