General Propagation Lattice Boltzmann Model for the Boussinesq Equation
Abstract
:1. Introduction
2. GPLB Model for Boussinesq Equations
2.1. GPLB Model for Boussinesq Equations
2.2. Recovery of Boussinesq Equations
2.3. Equilibrium Distribution Functions
3. Numerical Simulations
- (I)
- , the SLBGK scheme;
- (II)
- , the LW scheme;
- (III)
- , here we choose ;
- (IV)
- , the FP scheme;
- (V)
- , here, we choose .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamad, A.A. Lattice Boltzmann Method; Electronic Industry Press: Beijing, China, 2015. [Google Scholar]
- Chen, S.Y.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.H.; Succi, S.; Orszag, S.A. Recent advances in lattice Boltzmann computing. Annu. Rev. Comput. Phys. 1995, 3, 195–242. [Google Scholar]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method: Principles and Practice; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N. A lattice Boltzmann method for incompressible two-phase flow with large density differences. J. Comput. Phys. 2004, 198, 628–644. [Google Scholar] [CrossRef]
- Luo, L.S.; Girimaji, S.S. Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures. Phys. Rev. E 2003, 67, 036302. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.L.; Zhao, T.S. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 2002, 66, 036304. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.C.; Guo, Z.L. Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 2009, 79, 016701. [Google Scholar] [CrossRef]
- Guo, X.Y.; Shi, B.C.; Chai, Z.H. General propagation lattice Boltzmann model for nonlinear advection-diffusion equations. Phys. Rev. E 2018, 97, 043310. [Google Scholar] [CrossRef]
- Chai, Z.H.; Shi, B.C.; Guo, Z.L. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations. J. Sci. Comput. 2016, 69, 355. [Google Scholar] [CrossRef]
- Chai, Z.H.; He, N.Z.; Guo, Z.L.; Shi, B.C. Lattice Boltzmann model for high-order nonlinear partial differential equations. Phys. Rev. E 2018, 97, 013304. [Google Scholar] [CrossRef] [Green Version]
- Lan, Z.Z.; Hu, W.Q.; Guo, B.L. General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 2019, 73, 695–714. [Google Scholar] [CrossRef]
- Hirota, R. Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. 1973, 14, 805–809. [Google Scholar] [CrossRef]
- Hirota, R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 1973, 14, 810–814. [Google Scholar] [CrossRef]
- Hajji, M.A.; Al-Khaled, K. Analytic studies and numerical simulations of the generalized Boussinesq equation. Appl. Math. Comput. 2007, 191, 320–333. [Google Scholar] [CrossRef]
- Hu, W.P.; Deng, Z.C. Multi-symplectic method for generalized Boussinesq equation. Appl. Math. Mech. 2008, 29, 927–932. [Google Scholar] [CrossRef]
- Liu, F.; Shi, W.P.; Wu, F.F. A lattice Boltzmann model for the generalized Boussinesq equation. Appl. Math. Comput. 2016, 274, 331–342. [Google Scholar]
- He, Y.B.; Dong, X.L.; Lin, X.Y. Numerical analysis and simulation of solutions to a class of Boussinesq systems with source terms. Appl. Math. Mech. 2018, 39, 961–978. [Google Scholar]
- Guo, Z.L.; Zheng, C.G.; Zhao, T.S. A lattice BGK scheme with general propagation. J. Sci. Comput. 2002, 16, 569. [Google Scholar] [CrossRef]
- Hu, W.Q.; Li, Z.H. Investigation on different discrete velocity quadrature rules in gas-kinetic unified algorithm solving Boltzmann model equation. Comput. Math. Appl. 2018, 75, 4179. [Google Scholar] [CrossRef]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases, 3rd ed.; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Guo, Z.L.; Zheng, C.G.; Shi, B.C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 2002, 11, 366. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 7th ed.; International Thomson Publishing: Belmont, CA, USA, 2001. [Google Scholar]
- Fu, Z.T.; Liu, S.K.; Liu, S.D. The JEFE method and periodic solutions of two kinds of nonlinear wave equations. Commun. Nonlinear Sci. Numer. Simul. 2003, 8, 67–75. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 2001, 12, 1549–1556. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Li, C. General Propagation Lattice Boltzmann Model for the Boussinesq Equation. Entropy 2022, 24, 486. https://doi.org/10.3390/e24040486
Yang W, Li C. General Propagation Lattice Boltzmann Model for the Boussinesq Equation. Entropy. 2022; 24(4):486. https://doi.org/10.3390/e24040486
Chicago/Turabian StyleYang, Wei, and Chunguang Li. 2022. "General Propagation Lattice Boltzmann Model for the Boussinesq Equation" Entropy 24, no. 4: 486. https://doi.org/10.3390/e24040486
APA StyleYang, W., & Li, C. (2022). General Propagation Lattice Boltzmann Model for the Boussinesq Equation. Entropy, 24(4), 486. https://doi.org/10.3390/e24040486