Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method
Abstract
:1. Introduction: The Problem and Our Approach
1.1. Related Work
1.1.1. General
1.1.2. Augmenting the Network Structure
1.1.3. Converting the Network Structure into Feature Space
1.1.4. Model-Based Community Detection
2. Least-Squares Criterion and Extended K-Means
2.1. The Summability and Non-Summability Assumptions
2.2. The Criterion and Its Alternating Minimization
- Data standardization: standardize the features and the network links (see Section 4.1).
- Initialization:
- -
- Choose a number of clusters, ;
- -
- Initialize seed centers: , , as described below.
- Cluster update: given K centers in the feature space and K centers in the network space, determine partition using the Minimum Distance rule above.
- Stop-condition: Check whether for all . If yes, stop and output partition , and centers . Otherwise, change for at every k.
- Center update: Given clusters , calculate within-cluster means according to (7); go to Step 3.
- Start. Randomly choose an index and specify , r-th row of Y, and , r-th row of P.
- General step.
- (a)
- Given a set of already defined seeds, , compute the sum of combined distances for all remaining . (Recall that for all and .)
- (b)
- Define the next, -th center using that node i for which is maximum.
- If is equal to K, halt. Otherwise, set and go to the General step.
2.3. Using Manhattan Distance in KEFRiN
2.4. Using Cosine Distance in KEFRiN
3. Defining Experimental Framework for Testing KEFRiN
3.1. Algorithms under Comparison
3.2. Datasets
3.2.1. Real World Datasets
3.2.2. Generating Synthetic Data Sets
3.3. The Adjusted Rand Index as an Evaluation Criterion
4. Computationally Testing KEFRiN Methods
4.1. Data Pre-Processing
4.2. Experimental Validation of KEFRiN Methods at Synthetic Feature-Rich Networks
4.2.1. KEFRiN on Synthetic Networks with Quantitative Features
4.2.2. KEFRiN at Synthetic Networks with Categorical Features
4.2.3. KEFRiN at Synthetic Networks Combining Quantitative and Categorical Features
5. Experimental Comparison of Selected Methods
5.1. Comparison of Methods over Synthetic Networks with Categorical Features
5.2. Comparison of the Algorithms over Real-World Feature-Rich Network Data
5.3. Comparison of Methods over Computational Complexity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bojchevski, A.; Günnemanz., S. Bayesian robust attributed graph clustering: Joint learning of Partial anomalies and group structure. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 12–20. [Google Scholar]
- Xu, Z.; Ke, Y.; Wang, Y.; Cheng, H.; Cheng, J. A model-based approach to attributed graph clustering. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (ACM), Scottsdale, AZ, USA, 20–24 May 2012; pp. 505–516. [Google Scholar]
- Interdonato, R.; Atzmueller, M.; Gaito, S.; Kanawati, R.; Largeron, C.; Sala, A. Feature-rich networks: Going beyond complex network topologies. Appl. Netw. Sci. 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Chunaev, P. Community detection in node-attributed social networks: A survey. Comput. Sci. Rev. 2020, 37, 100286. [Google Scholar] [CrossRef]
- Citraro, S.; Rossetti, G. X-Mark: A benchmark for node-attributed community discovery algorithms. Soc. Netw. Anal. Min. 2021, 11, 99. [Google Scholar] [CrossRef]
- Berahmand, K.; Mohammadi, M.; Faroughi, A.; Mohammadiani, R.P. A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix. Clust. Comput. 2021, 11, 869–888. [Google Scholar] [CrossRef]
- Walia, A.K.; Chhabra, A.; Sharma, D. Comparative Analysis of Contemporary Network Simulators. affinity matrix. In Innovative Data Communication Technologies and Application; Springer: Berlin/Heidelberg, Germany, 2022; pp. 369–383. [Google Scholar]
- Jia, C.; Li, Y.; Carson, M.; Wang, X.; Yu, J. Node attribute-enhanced community detection in complex networks. Sci. Rep. 2017, 7, 2626. [Google Scholar] [CrossRef] [Green Version]
- Mirkin, B. Clustering: A Data Recovery Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Shalileh, S.; Mirkin, B. A Method for Community Detection in Networks with Mixed Scale Features at Its Nodes. In Proceedings of the International Conference on Complex Networks and Their Applications, Madrid, Spain, 30 November–2 December 2020; pp. 3–14. [Google Scholar]
- Shalileh, S.; Mirkin, B. Summable and nonsummable data-driven models for community detection in feature-rich networks. Soc. Netw. Anal. Min. 2021, 11, 67. [Google Scholar] [CrossRef]
- Magara, M.B.; Ojo, S.O.; Zuva, T. A comparative analysis of text similarity measures and algorithms in research paper recommender systems. In Proceedings of the Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 8–9 March 2018; pp. 1–5. [Google Scholar]
- Bi, J.; Cao, H.; Wang, Y.; Zheng, G.; Liu, K.; Cheng, N.; Zhao, M. DBSCAN and TD Integrated Wi-Fi Positioning Algorithm. Remote Sens. 2022, 14, 297. [Google Scholar] [CrossRef]
- Shalileh, S.; Mirkin, B. Two Extensions of K-Means algorithm for Community Detection in Feature-Rich Networks. In Proceedings of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), The Hague, The Netherlands, 7–10 December 2021; pp. 358–373. [Google Scholar]
- Neville, J.; Adler, M.; Jensen, D. Clustering relational data using attribute and link information. In Proceedings of the Text Mining and Link Analysis Workshop, 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003; pp. 9–15. [Google Scholar]
- Steinhaeuser, K.; Chawla, N. Community detection in a large real-world social network. In Social Computing, Behavioral Modeling, and Prediction; Springer: Boston, MA, USA, 2008; pp. 168–175. [Google Scholar]
- Cheng, Y.Z.H.; Yu, J. Clustering large attributed graphs: An efficient incremental approach. In Proceedings of the IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; pp. 689–698. [Google Scholar]
- Yin, Z.; Gupta, M.; Weninger, T.; Han, J. A unified framework for link recommendation using random walks. In Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining (IEEE), Odense, Denmark, 9–11 August 2010; pp. 152–159. [Google Scholar]
- Cheng, H.; Zhou, Y.; Yu, J.X. Clustering large attributed graphs: A balance between structural and attribute similarities. ACM Trans. Knowl. Discov. Data (TKDD) 2011, 5, 1–33. [Google Scholar] [CrossRef]
- Cruz, J.; Bothorel, C.; Poulet, F. Entropy based community detection in augmented social networks. In Proceedings of the International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 19–21 October 2011; pp. 163–168. [Google Scholar]
- Li, Y.; Jia, C.; Yu, J. Parameter-free community detection method based on centrality and dispersion of nodes in complex networks. Phys. A–Stat. Mech. Its Appl. 2015, 438, 321–334. [Google Scholar] [CrossRef]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. Pagerank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- He, D.; Jin, D.; Chen, Z.; Zhang, W. Identification of hybrid node and link communities in complex networks. Nat. Sci. Rep. 2015, 5, 8638. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Yu, W.; Li, S. A clustering algorithm for determining community structure in complex networks. Phys. A Stat. Mech. Appl. 2018, 492, 980–993. [Google Scholar] [CrossRef]
- Green, P.; Silverman, B. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1993. [Google Scholar]
- Abrahao, B.; Soundarajan, S.; Hopcroft, J.; Kleinberg, R. On the separability of structural classes of communities. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 624–632. [Google Scholar]
- Hu, Y.; Li, M.; Zhang, P.; Fan, Y.; Di, Z. Community detection by signaling on complex networks. Phys. Rev. E 2008, 78, 16115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Zhao, Y. Network community detection from the perspective of time series. Phys. A Stat. Mech. Its Appl. 2019, 522, 205–214. [Google Scholar] [CrossRef]
- Chang, S.; Han, W.; Tang, J.; Qi, G.; Aggarwal, C.; Huang, T. Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 119–128. [Google Scholar]
- Shi, W.; Huang, L.; Wang, C.D.; Li, J.H.; Tang, Y.; Fu, C. Network embedding via community based variational autoencoder. IEEE Access 2019, 7, 25323–25333. [Google Scholar] [CrossRef]
- Zhang, Y.; Levina, E.; Zhu, J. Community detection in networks with node features. Electron. J. Stat. 2016, 10, 3153–3178. [Google Scholar] [CrossRef]
- Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; Huang, J. Semi-supervised graph classification: A hierarchical graph perspective. In Proceedings of the World Wide Web Conference (ACM), San Francisco, CA, USA, 13 May 2019; pp. 972–982. [Google Scholar]
- Stanley, N.; Bonacci, T.; Kwitt, R.; Niethammer, M.; Mucha, P.J. Stochastic block models with multiple continuous attributes. Appl. Netw. Sci. 2019, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Peel, L.; Larremore, D.; Clauset, A. The ground truth about metadata and community detection in networks. Sci. Adv. 2017, 3, e1602548. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.; Clauset, A. Structure and inference in annotated networks. Nat. Commun. 2016, 7, 11863. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; McAuley, J.; Leskovec, J. Community detection in networks with node attributes. In Proceedings of the IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1151–1156. [Google Scholar]
- Jin, D.; He, J.; Chai, B.; He, D. Semi-supervised community detection on attributed networks using non-negative matrix tri-factorization with node popularity. Front. Comput. Sci. 2021, 15, 154324. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Z.; Shang, M.; Zhou, M. Highly-Accurate Community Detection via Pointwise Mutual Information-Incorporated Symmetric Non-negative Matrix Factorization. IEEE Trans. Netw. Sci. Eng. 2020, 8, 463–476. [Google Scholar] [CrossRef]
- Wang, X.; Jin, D.; Cao, X.; Yang, L.; Zhang, W. Semantic community identification in large attribute networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 265–271. [Google Scholar]
- Cao, J.; Wanga, H.; Jin, D.; Dang, J. Combination of links and node contents for community discovery using a graph regularization approach. Future Gener. Comput. Syst. 2019, 91, 361–370. [Google Scholar] [CrossRef]
- Shalileh, S.; Mirkin, B. Least-squares community extraction in feature-rich networks using similarity data. PLoS ONE 2021, 16, e0254377. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, L.; Tong, H.; Meeder, B.; Faloutsos, C. Parameter-free identification of cohesive subgroups in large attributed graphs. In Proceedings of the 12th SIAM International Conference on Data Mining (PICS), Anaheim, CA, USA, 26–28 April 2012; pp. 439–450. [Google Scholar]
- Mirkin, B. The iterative extraction approach to clustering. In Principal Manifolds for Data Visualization and Dimension Reduction; Gorban, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 151–177. [Google Scholar]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Miami, FL, USA, 22–24 January 2006; pp. 1027–1035. [Google Scholar]
- Shalileh, S.; Mirkin, B. A One-by-One Method for Community Detection in Attributed Networks. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Guimaraes, Portugal, 4–6 November 2020; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2020; Volume 12490, pp. 413–422. [Google Scholar]
- Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Müller, E. Graph clustering with graph neural networks. arXiv 2020, arXiv:2006.16904. [Google Scholar]
- Leskovec, J.; Sosič, R. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. (TIST) 2016, 8, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalileh, S. SEANAC Source Code. Available online: https://github.com/Sorooshi/SEANAC (accessed on 30 August 2020).
- Cross, R.; Parker, A. The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations; Harvard Business Press: Boston, MA, USA, 2004. [Google Scholar]
- Lazega, E. The Collegial Phenomenon: The Social Mechanisms of Cooperation among Peers in a Corporate Law Partnership; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Nooy, W.D.; Mrvar, A.; Batagelj, V. Exploratory Social Network Analysis with Pajek; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Larremore, D.; Clauset, A.; Buckee, C.O. A network approach to analyzing highly recombinant malaria parasite genes. PLoS Comput. Biol. 2013, 9, e1003268. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008, 29, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868. [Google Scholar]
- Snijders, T. Lawyers Data Set. Available online: https://www.stats.ox.ac.uk/~snijders/siena/ (accessed on 26 April 2022).
- Smith, D.; White, D. Structure and Dynamics of the Global Economy-Network Analysis of International-Trade 1965–1980. Soc. Forces 1992, 70, 857–893. [Google Scholar] [CrossRef]
- Kovaleva, E.V.; Mirkin, B. Bisecting K-means and 1D projection divisive clustering: A unified framework and experimental comparison. J. Classif. 2015, 32, 414–442. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Cover, T.; Thomas, J. Elements of Information Theory; John Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]
- Blömer, J.; Lammersen, C.; Schmidt, M.; Sohler, C. Theoretical analysis of the k-means algorithm—A survey. In Algorithm Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 81–116. [Google Scholar]
Name | Vertices | Links | Attributes | Number of Communities | Ground Truth | Ref. |
---|---|---|---|---|---|---|
COSN | 46 | 552 | 16 | 2 | Region | [50] |
Lawyers | 71 | 339 | 18 | 6 | Derived out-of-office and status features | [51] |
World Trade | 80 | 1000 | 16 | 5 | Structural world system in 1980 features | [52] |
Malaria HVR6 | 307 | 6526 | 6 | 2 | Cys Labels | [53] |
Parliament | 451 | 11,646 | 108 | 7 | Political parties | [1] |
Cora | 2708 | 5276 | 1433 | 7 | Computer Science research area | [54] |
SinaNet | 3490 | 30,282 | 10 | 10 | Users of same forum | [8] |
Amazon Photo | 7650 | 71,831 | 745 | 8 | Product categories | [55] |
No Noise | With Noise | |||||
---|---|---|---|---|---|---|
KEFRiNe | KEFRiNc | KEFRiNm | KEFRiNe | KEFRiNc | KEFRiNm | |
0.9, 0.3, 0.9 | 0.818(0.163) | 0.920(0.132) | 0.951(0.102) | 0.847(0.185) | 0.971(0.086) | 0.926(0.115) |
0.9, 0.3, 0.7 | 0.823(0.119) | 0.904(0.117) | 0.925(0.117) | 0.866(0.112) | 0.837(0.138) | 0.862(0.143) |
0.9, 0.6, 0.9 | 0.792(0.179) | 0.737(0.124) | 0.866(0.157) | 0.765(0.092) | 0.738(0.174) | 0.770(0.176) |
0.9, 0.6, 0.7 | 0.796(0.180) | 0.865(0.135) | 0.802(0.184) | 0.800(0.180) | 0.765(0.162) | 0.806(0.177) |
0.7, 0.3, 0.9 | 0.849(0.128) | 0.909(0.119) | 0.880(0.152) | 0.786(0.178) | 0.915(0.125) | 0.845(0.133) |
0.7, 0.3, 0.7 | 0.809(0.098) | 0.803(0.132) | 0.935(0.100) | 0.831(0.142) | 0.760(0.200) | 0.944(0.112) |
0.7, 0.6, 0.9 | 0.499(0.184) | 0.753(0.162) | 0.303(0.086) | 0.558(0.174) | 0.544(0.164) | 0.316(0.150) |
0.7, 0.6, 0.7 | 0.595(0.189) | 0.742(0.125) | 0.306(0.114) | 0.462(0.129) | 0.534(0.100) | 0.279(0.141) |
Average | 0.748 | 0.830 | 0.831 | 0.740 | 0.758 | 0.718 |
Small | Medium | |||||
---|---|---|---|---|---|---|
KEFRiNe | KEFRiNc | KEFRiNm | KEFRiNe | KEFRiNc | KEFRiNm | |
0.9, 0.3, 0.9 | 0.855(0.145) | 0.922(0.119) | 0.961(0.079) | 0.508(0.205) | 0.724(0.097) | 0.863(0.089) |
0.9, 0.3, 0.7 | 0.795(0.149) | 0.819(0.142) | 0.863(0.138) | 0.777(0.129) | 0.742(0.182) | 0.762(0.184) |
0.9, 0.6, 0.9 | 0.787(0.149) | 0.726(0.097) | 0.893(0.147) | 0.279(0.204) | 0.652(0.110) | 0.894(0.074) |
0.9, 0.6, 0.7 | 0.588(0.173) | 0.711(0.145) | 0.821(0.120) | 0.766(0.180) | 0.733(0.083) | 0.819(0.053) |
0.7, 0.3, 0.9 | 0.827(0.141) | 0.877(0.130) | 0.951(0.099) | 0.364(0.247) | 0.641(0.111) | 0.791(0.119) |
0.7, 0.3, 0.7 | 0.794(0.144) | 0.795(0.117) | 0.877(0.137) | 0.829(0.085) | 0.797(0.088) | 0.759(0.092) |
0.7, 0.6, 0.9 | 0.399(0.094) | 0.819(0.142) | 0.865(0.119) | 0.426(0.246) | 0.591(0.094) | 0.859(0.083) |
0.7, 0.6, 0.7 | 0.074(0.047) | 0.834(0.132) | 0.392(0.121) | 0.671(0.196) | 0.773(0.070) | 0.695(0.074) |
Average | 0.640 | 0.812 | 0.828 | 0.578 | 0.710 | 0.810 |
No Noise | With Noise | |||||
---|---|---|---|---|---|---|
KEFRiNe | KEFRiNc | KEFRiNm | KEFRiNe | KEFRiNc | KEFRiNm | |
0.9, 0.3, 0.9 | 0.823(0.125) | 0.752(0.096) | 0.869(0.132) | 0.862(0.140) | 0.810(0.153) | 0.859(0.146) |
0.9, 0.3, 0.7 | 0.840(0.133) | 0.769(0.101) | 0.944(0.114) | 0.864(0.137) | 0.858(0.143) | 0.873(0.130) |
0.9, 0.6, 0.9 | 0.756(0.171) | 0.809(0.138) | 0.817(0.179) | 0.733(0.184) | 0.717(0.130) | 0.923(0.106) |
0.9, 0.6, 0.7 | 0.831(0.185) | 0.716(0.122) | 0.754(0.193) | 0.708(0.223) | 0.549(0.186) | 0.845(0.150) |
0.7, 0.3, 0.9 | 0.872(0.129) | 0.750(0.078) | 0.897(0.129) | 0.713(0.185) | 0.881(0.109) | 0.851(0.152) |
0.7, 0.3, 0.7 | 0.782(0.155) | 0.681(0.078) | 0.848(0.152) | 0.840(0.130) | 0.647(0.143) | 0.899(0.125) |
0.7, 0.6, 0.9 | 0.583(0.143) | 0.704(0.139) | 0.389(0.122) | 0.576(0.104) | 0.520(0.118) | 0.244(0.130) |
0.7, 0.6, 0.7 | 0.473(0.095) | 0.540(0.135) | 0.207(0.098) | 0.370(0.123) | 0.421(0.106) | 0.183(0.059) |
Average | 0.745 | 0.715 | 0.716 | 0.708 | 0.675 | 0.710 |
No Noise | With Noise | |||||
---|---|---|---|---|---|---|
KEFRiNe | KEFRiNc | KEFRiNm | KEFRiNe | KEFRiNc | KEFRiNm | |
0.9, 0.3, 0.9 | 0.570(0.121) | 0.834(0.044) | 0.697(0.122) | 0.541(0.122) | 0.790(0.102) | 0.777(0.116) |
0.9, 0.3, 0.7 | 0.540(0.158) | 0.801(0.051) | 0.686(0.124) | 0.784(0.110) | 0.733(0.103) | 0.768(0.131) |
0.9, 0.6, 0.9 | 0.641(0.068) | 0.747(0.071) | 0.601(0.075) | 0.699(0.085) | 0.645(0.061) | 0.641(0.069) |
0.9, 0.6, 0.7 | 0.672(0.082) | 0.722(0.059) | 0.573(0.061) | 0.655(0.091) | 0.617(0.046) | 0.624(0.074) |
0.7, 0.3, 0.9 | 0.614(0.085) | 0.853(0.048) | 0.578(0.134) | 0.556(0.113) | 0.739(0.117) | 0.551(0.104) |
0.7, 0.3, 0.7 | 0.543(0.081) | 0.773(0.060) | 0.574(0.113) | 0.753(0.084) | 0.708(0.078) | 0.658(0.108) |
0.7, 0.6, 0.9 | 0.385(0.120) | 0.726(0.058) | 0.180(0.139) | 0.640(0.106) | 0.593(0.135) | 0.077(0.105) |
0.7, 0.6, 0.7 | 0.255(0.050) | 0.608(0.037) | 0.102(0.079) | 0.512(0.057) | 0.483(0.021) | 0.035(0.010) |
Average | 0.528 | 0.758 | 0.499 | 0.642 | 0.664 | 0.516 |
Dataset | CESNA | SIAN | DMoN | SEANAC | KEFRiNe | KEFRiNc | KEFRiNm |
---|---|---|---|---|---|---|---|
0.9, 0.3, 0.9 | 1.00(0.00) | 0.554(0.285) | 0.709(0.101) | 0.994(0.008) | 0.886(0.116) | 0.922(0.119) | 0.895(0.173) |
0.9, 0.3, 0.7 | 0.948(0.105) | 0.479(0.289) | 0.380(0.107) | 0.974(0.024) | 0.835(0.138) | 0.819(0.142) | 0.891(0.135) |
0.9, 0.6, 0.9 | 0.934(0.075) | 0.320(0.255) | 0.412(0.109) | 0.965(0.013) | 0.963(0.072) | 0.726(0.097) | 0.868(0.202) |
0.9, 0.6, 0.7 | 0.902(0.063) | 0.110(0.138) | 0.213(0.051) | 0.750(0.117) | 0.694(0.096) | 0.711(0.145) | 0.791(0.191) |
0.7, 0.3, 0.9 | 0.965(0.078) | 0.553(0.157) | 0.566(0.105) | 0.975(0.018) | 0.788(0.117) | 0.877(0.130) | 0.937(0.124) |
0.7, 0.3, 0.7 | 0.890(0.138) | 0.508(0.211) | 0.292(0.077) | 0.870(0.067) | 0.836(0.115) | 0.795(0.117) | 0.824(0.191) |
0.7, 0.6, 0.9 | 0.506(0.101) | 0.047(0.087) | 0.345(0.064) | 0.896(0.067) | 0.762(0.169) | 0.834(0.132) | 0.379(0.174) |
0.7, 0.6, 0.7 | 0.202(0.081) | 0.030(0.040) | 0.115(0.058) | 0.605(0.091) | 0.574(0.142) | 0.540(0.107) | 0.184(0.098) |
Dataset | CESNA | SIAN | DMoN | SEANAC | KEFRiNe | KEFRiNc | KEFRiNm |
---|---|---|---|---|---|---|---|
0.9, 0.3, 0.9 | 0.894(0.053) | 0.000(0.000) | 0.512(0.137) | 1.000(0.000) | 0.508(0.205) | 0.724(0.097) | 0.863(0.089) |
0.9, 0.3, 0.7 | 0.849(0.076) | 0.000(0.000) | 0.272(0.073) | 0.996(0.005) | 0.777(0.129) | 0.742(0.182) | 0.762(0.184) |
0.9, 0.6, 0.9 | 0.632(0.058) | 0.000(0.000) | 0.370(0.063) | 0.998(0.002) | 0.279(0.204) | 0.652(0.110) | 0.894(0.074) |
0.9, 0.6, 0.7 | 0.474(0.089) | 0.000(0.000) | 0.168(0.030) | 0.959(0.032) | 0.766(0.180) | 0.733(0.083) | 0.819(0.053) |
0.7, 0.3, 0.9 | 0.764(0.068) | 0.026(0.077) | 0.446(0.099) | 1.000(0.001) | 0.364(0.247) | 0.641(0.111) | 0.791(0.119) |
0.7, 0.3, 0.7 | 0.715(0.128) | 0.000(0.000) | 0.228(0.077) | 0.993(0.002) | 0.829(0.085) | 0.797(0.088) | 0.759(0.092) |
0.7, 0.6, 0.9 | 0.060(0.024) | 0.000(0.000) | 0.332(0.051) | 0.998(0.001) | 0.426(0.246) | 0.591(0.094) | 0.859(0.083) |
0.7, 0.6, 0.7 | 0.016(0.008) | 0.000(0.000) | 0.133(0.016) | 0.909(0.035) | 0.671(0.196) | 0.773(0.070) | 0.695(0.074) |
Dataset | SEANAC | KEFRiNe | KEFRiNc | KEFRiNm | ||||
---|---|---|---|---|---|---|---|---|
Y | P | Y | P | Y | P | Y | P | |
Malaria HVR6 | Z | U | R | R | N | N | Z | M |
Lawyers | R | S | Z | N | Z | N | Z | M |
World Trade | R | R | N | N | Z | M | R | M |
Parliament | Z | M | N | N | Z | N | R | M |
COSN | Z | N | Z | N | Z | N | R | M |
Cora | Z | M | N | N | N | N | Z | M |
SinaNet | Z | M | Z | Z | Z | N | Z | M |
Amazon Photo | N|A | Z | S | N | N | Z | M |
Dataset | CESNA | SIAN | DMoN | SEANAC | KEFRiNe | KEFRiNc | KEFRiNm |
---|---|---|---|---|---|---|---|
HRV6 | 0.20(0.00) | 0.39(0.29) | 0.64(0.00) | 0.49(0.11) | 0.34(0.02) | 0.69(0.38) | −0.056(0.004) |
Lawyers | 0.28(0.00) | 0.59(0.04) | 0.60(0.04) | 0.60(0.09) | 0.43(0.13) | 0.44(0.14) | 0.415(0.085) |
World Trade | 0.13(0.00) | 0.10(0.01)) | 0.13(0.02) | 0.29(0.10) | 0.27(0.17) | 0.40(0.11) | 0.048(0.013) |
Parliament | 0.25(0.00) | 0.79(0.12) | 0.48(0.02) | 0.28(0.01) | 0.15(0.09) | 0.41(0.05) | −0.035(0.001) |
COSN | 0.44(0.00) | 0.75(0.00) | 0.91(0.00) | 0.72(0.02) | 0.65(0.18) | 1.00(0.00) | 0.493(0.056) |
Cora | 0.14(0.00) | 0.17(0.03) | 0.37(0.04) | 0.00(0.00) | 0.00(0.00) | 0.21(0.01) | −0.000(0.000) |
SinaNet | 0.09(0.00) | 0.17(0.02) | 0.28(0.01) | 0.21(0.03) | 0.31(0.02) | 0.34(0.02) | 0.001(0.000) |
Amazon Photo | 0.19(0.000) | N|A | 0.44(0.04) | N|A | 0.06(0.01) | 0.43(0.06) | 0.030(0.001) |
CESNA | SIAN | DMoN | SEANAC | KEFRiNe | KEFRiNc | KEFRiNm | |
---|---|---|---|---|---|---|---|
0.9, 0.3, 0.9 | 38.265 | 856.785 | 124.698 | 492.006 | 2.434 | 2.389 | 0.1946 |
0.7, 0.6, 0.7 | 83.961 | 2674.541 | 207.541 | 476.251 | 2.859 | 3.131 | 0.2261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalileh, S.; Mirkin, B. Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method. Entropy 2022, 24, 626. https://doi.org/10.3390/e24050626
Shalileh S, Mirkin B. Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method. Entropy. 2022; 24(5):626. https://doi.org/10.3390/e24050626
Chicago/Turabian StyleShalileh, Soroosh, and Boris Mirkin. 2022. "Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method" Entropy 24, no. 5: 626. https://doi.org/10.3390/e24050626
APA StyleShalileh, S., & Mirkin, B. (2022). Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method. Entropy, 24(5), 626. https://doi.org/10.3390/e24050626