A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
3. The Multi-Criteria Decision Support—MCDS
3.1. Selection of Methods
- If there are no experts to help in the evaluations, then the parameter will be chosen to be equal to zero.
- If there are some experts for the evaluations in which there is a little confidence, one can take the values of the parameter close to zero.
- If there are several experts for the evaluations in which there is great confidence, one can take the values of the parameter close to one or even equal to one.
3.2. MCDS Input Data
- the set of experts.
- C is the set of n criteria . A criterion Ci from the set C is measured using a measure unit. They are two types of criteria: min criteria (those for which the decreasing values are better) and max criteria (those for which the increasing values are better). A weight can be calculated for each criterion.
- α is the threshold for acceptance of inconsistency. In our study, we shall take α = 0.1.
- the set of m alternatives.
- C is the set of n criteria (same as in GAHP).
- Q is the evaluation matrix alternatives criteria.
- Parameter of the extended entropy function.
- The input data in the overall criteria weights are:
- Parameter ∈ [0; 1] that shows the trade-off between subjective and objective weights.
- GAHP weights and EEWM weights.
- is the set of m alternatives (same as in EEWM).
- C is the set of n criteria (same as in GAHP and EEWM).
- is the normalized evaluation matrix alternatives criteria (same as in EEWM).
- Overall criteria weights.
3.3. MCDS Stages
- 1.
- Construction of input data in the MCDS;
- 2.
- Application of the GAHP weighting method:
- a.
- Checking the consistency and aggregation of the pairwise comparison matrices ;
- b.
- Calculation of the GAHP criteria weights ;
- 3.
- Application of the EEWM and overall criteria weights:
- c.
- Normalized evaluation matrix calculation;
- d.
- Extended entropy calculation;
- e.
- Calculation of EEWM criteria ;
- f.
- Overall criteria weights calculation ;
- 4.
- Application of the COPRAS method:
- g.
- Weighted normalized evaluation matrix calculation;
- h.
- Maximizing indexes and minimizing indexes calculation;
- i.
- Relative significance value calculation;
- j.
- Calculation of COPRAS solutions and COPRAS solutions ranks .
3.4. Group Analytic Hierarchy Process Weighting Method
3.5. Extended Entropy Weighting Method—EEWM
3.6. Overall Criteria Weights Calculation
3.7. COPRAS Method
4. Case Study
- The slope of the fourth COVID wave in 2021 (C1). Here, by the slope, we understand the ratio between the number of new cases, in the period of time this number (we shall consider the smooth number) is increasing, and the number of days in the above-mentioned period. One can easily see that a great slope is not desirable, since the hospitals have a limited capacity and cannot treat more patients than they can handle;
- New cases smoothed/1 million inhabitants (C2);
- New deaths smoothed/1 million inhabitants (C3);
- Patients in intensive care units/1 million inhabitants (C4);
- New tests smoothed/1 million inhabitants (C5).
- European countries with a population of more than 5 million;
- Countries for which data were available for the all selected criteria;
- Countries where there was an obvious COVID-19 fourth wave.
- COVID-19 Data Repository of the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [66]. Source data for COVID-19 are daily updated from 22 January 2020. The data come from governments, national and sub-national agencies around the world. Here are links to aggregate data sources for COVID-19. Two of them are the World Health Organization (WHO) [67] and European Centre for Disease Prevention and Control (ECDC) [68].
- Worldometer [69]. For the COVID-19 data, Worldometer collects data from official reports, directly from the government’s communication channels or indirectly, through local media sources when deemed reliable (5000 sources).
- The COVID-19 dataset, a collection of the COVID-19 data, maintained by The Oxford Martin School and University of Oxford. It is updated daily throughout the duration of the COVID-19 pandemic [70].
4.1. Application of the GAHP Method
4.2. Application of the EEWM
4.3. Overall Criteria Weights Calculation
4.4. Application of the COPRAS Method
4.5. Comparison of COPRAS Ranks Obtained with EWM and EEWM
4.6. A Comparative Analysis with General Countries’ Indicators
5. Conclusions
- A multi-criteria decision support (MCDS) based on EEWM, GAHP and COPRAS was proposed.
- An extended method called EEWM for computing the objective weights of the criteria was proposed. This method extends the classical EWM method by using an entropy function, which generalizes the classical Shannon entropy function. The EEWM is used in combination with GAHP and COPRAS in the MCDS.
- In order to emphasize the compromise between the subjectivism of experts and the objectivism of evaluation matrix, a parameter was introduced. The parameter can be varied in the range [0; 1] to achieve the compromise between the two methods for determining the criteria weights.
- The proposed MCDS is applied for the calculation of a complex indicator COVIND for a group of European countries in the fourth wave COVID-19.
- An analysis of the obtained MCDS rankings was realized:
- By the variation of the parameter that combines the EEWM and GAHP weights;
- By the variation of the parameter of extended entropy;
- By using alternative multi-criteria methods VIKOR and TOPSIS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zavadskas, E.K.; Stević, Ž.; Turskis, Z.; Tomašević, M. A novel extended EDAS in Minkowski Space (EDAS-M) method for evaluating autonomous vehicles. Stud. Inf. Control 2019, 28, 255–264. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Lescauskiene, I.; Omran, J. M-generalied q-neutrosophic MULTIMOORA for Decision Making. Stud. Inf. Control 2020, 29, 389–398. [Google Scholar] [CrossRef]
- Radulescu, C.Z.; Rădulescu, I.C. An extended TOPSIS approach for ranking cloud service providers. Stud. Inf. Control 2017, 26, 183–192. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1994. [Google Scholar]
- Saaty, T.L.; Hu, G. Ranking by eigenvector versus other methods in the analytic hierarchy process. Appl. Math. Lett. 1998, 11, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Zavadskas, E.; Kaklauskas, A. Determination of an efficient contractor by using the new method of multicriteria assessment. In Proceedings of the International Symposium for “The Organization and Management of Construction”. Shaping Theory and Practice, Glasgow, UK, 28 August–3 September 1996; pp. 94–104. [Google Scholar]
- Jia, Q.; Hu, J.; He, Q.; Zhang, W.; Safwat, E. A Multicriteria Group Decision-making Method Based on AIVIFSs, Z-numbers, and Trapezium Clouds. Inf. Sci. 2021, 566, 38–56. [Google Scholar] [CrossRef]
- Requia, W.J.; Kondo, E.K.; Adams, M.D.; Gold, D.R.; Struchiner, C.J. Risk of the Brazilian health care system over 5572 municipalities to exceed health care capacity due to the 2019 novel coronavirus (COVID-19). Sci. Total Environ. 2020, 730, 139144. [Google Scholar] [CrossRef]
- Yildirim, F.S.; Sayan, M.; Sanlidag, T.; Uzun, B.; Ozsahin, D.U.; Ozsahin, I. Comparative Evaluation of the Treatment of COVID-19 with Multicriteria Decision-Making Techniques. J. Healthcare Eng. 2021, 2021, 8864522. [Google Scholar] [CrossRef]
- Pamučar, D.; Žižović, M.; Marinković, D.; Doljanica, D.; Jovanović, S.V.; Brzaković, P. Development of a Multi-Criteria Model for Sustainable Reorganization of a Healthcare System in an Emergency Situation Caused by the COVID-19 Pandemic. Sustainability 2020, 12, 7504. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Abdulkareem, K.H.; Al-Waisy, A.S.; Mostafa, S.A.; Al-Fahdawi, S.; Dinar, A.M.; Alhakami, W.; Baz, A.; Al-Mhiqani, M.N.; Alhakami, H.; et al. Benchmarking methodology for selection of optimal COVID-19 diagnostic model based on entropy and TOPSIS methods. IEEE Access 2020, 8, 99115–99131. [Google Scholar] [CrossRef]
- Mirri, S.; Roccetti, M.; Delnevo, G. The New York City COVID-19 spread in the 2020 spring: A study on the potential role of particulate using time series analysis and machine learning. Appl. Sci. 2021, 11, 1177. [Google Scholar] [CrossRef]
- Arsalan, M.; Mubin, O.; Alnajjar, F.; Alsinglawi, B. COVID-19 global risk: Expectation vs. reality. Int. J. Environ. Res. Public Health 2020, 17, 5592. [Google Scholar] [CrossRef] [PubMed]
- Altuntas, F.; Gok, M.S. The effect of COVID-19 pandemic on domestic tourism: A DEMATEL method analysis on quarantine decisions. Int. J. Hosp. Manag. 2021, 92, 102719. [Google Scholar] [CrossRef] [PubMed]
- Torkayesh, A.E.; Pamucar, D.; Ecer, F.; Chatterjee, P. An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio-Econ. Plann. Sci. 2021, 78, 101052. [Google Scholar] [CrossRef]
- Fonseca i Casas, P.; García i Carrasco, V.; Garcia i Subirana, J. SEIRD COVID-19 formal characterization and model comparison validation. Appl. Sci. 2020, 10, 5162. [Google Scholar] [CrossRef]
- Hezer, S.; Gelmez, E.; Özceylan, E. Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional Safety Assessment. J. Infect. Public Health 2021, 14, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Marti, L.; Puertas, R. European countries’ vulnerability to COVID-19: Multicriteria decision-making techniques. Econ. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Vinodhini, G.A.F. Country ranking of COVID 19 using MCDM methods. J. Crit. Rev. 2020, 7, 1333–1338. [Google Scholar]
- Acharya, R.; Porwal, A. A vulnerability index for the management of and response to the COVID-19 epidemic in India: An ecological study. Lancet. Glob. Health 2020, 8, e1142–e1151. [Google Scholar] [CrossRef]
- Saghapour, T.; Giles-Corti, B.; Jafari, A.; Qaisrani, M.A.; Turrell, G. Supporting pandemic disease preparedness: Development of a composite index of area vulnerability. Health Place 2021, 70, 102629. [Google Scholar] [CrossRef]
- Abbey, E.J.; Khalifa, B.A.; Oduwole, M.O.; Ayeh, S.K.; Nudotor, R.D.; Salia, E.L.; Lasisi, O.; Bennett, S.; Yusuf, H.E.; Agwu, A.L.; et al. The Global Health Security Index is not predictive of coronavirus pandemic responses among Organization for Economic Cooperation and Development countries. PLoS ONE 2020, 15, e0239398. [Google Scholar] [CrossRef] [PubMed]
- Nicodemo, C.; Barzin, S.; Lasserson, D.; Moscone, F.; Redding, S.; Shaikh, M. Measuring geographical disparities in England at the time of COVID-19: Results using a composite indicator of population vulnerability. BMJ Open 2020, 10, e039749. [Google Scholar] [CrossRef] [PubMed]
- Ignat, R.; Constantin, M. Multidimensional Facets of Entrepreneurial Resilience during the COVID-19 Crisis through the Lens of the Wealthiest Romanian Counties. Sustainability 2020, 12, 10220. [Google Scholar] [CrossRef]
- Duro, J.A.; Perez-Laborda, A.; Turrion-Prats, J.; Fernández-Fernández, M. COVID-19 and tourism vulnerability. Tourism Manag. Perspect. 2021, 38, 100819. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Abdullah, S.; Almagrabi, A.O. A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19. Soft Comput. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Alsalem, M.A.; Alamoodi, A.H.; Albahri, O.S.; Dawood, K.A.; Mohammed, R.T.; Alnoor, A.; Zaidan, A.A.; Albahri, A.S.; Jumaah, F.M.; Al-Obaidi, J.R. Multi-criteria decision-making for coronavirus disease 2019 applications: A theoretical analysis review. Artif. Intel. Rev. 2022, 1–84. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Jain, D. Pythagorean fuzzy entropy measure-based complex proportional assessment technique for solving multi-criteria healthcare waste treatment problem. Granul. Comput. 2022, 1–14. [Google Scholar] [CrossRef]
- Filip, F.G.; Zamfirescu, C.B.; Ciurea, C. Computer-Supported Collaborative Decision-Making; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s Entropy and Multi Attribute Decision Making. Entropy 2010, 12, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Hwang, C.L.; Yoon, K.S. Multiple Attribute Decision Making: Methods and Applications; Springer: Cham, Switzerland, 1981. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The CRITIC method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Chu, A.T.W.; Kalaba, R.E.; Spingarn, K. A comparison of two methods for determining the weights of belonging to fuzzy sets. J. Optimiz. Theory Appl. 1979, 27, 531–538. [Google Scholar] [CrossRef]
- Edwards, W. How to use multi attribute utility measurement for social decision making. IEEE Trans. Syst. Man. Cybern. 1977, 7, 326–340. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill Press: New York, NY, USA, 1980. [Google Scholar]
- Kersuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of Weighted Aggregated Sum Product Assessment. Electron. Electr. Eng. 2012, 122, 3–6. [Google Scholar]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Radulescu, C.Z.; Radulescu, M. Group decision support approach for cloud quality of service criteria weighting. Stud. Inf. Control 2018, 27, 275–284. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today-Proc. 2022, 50, 709–715. [Google Scholar] [CrossRef]
- Rahman, M.A.; Pereda, V.A. Freight transport and logistics evaluation using entropy technique integrated to TOPSIS algorithm. In Design Solutions for User-Centric Information Systems; IGI Global: Hershey, PA, USA, 2016; pp. 63–89. [Google Scholar]
- Kumar, R.; Singh, S.; Bilga, P.S.; Singh, J.; Singh, S.; Scutaru, M.L.; Pruncu, C.I. Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. J. Mater. Sci. Technol. 2021, 10, 1471–1492. [Google Scholar] [CrossRef]
- Bai, H.; Feng, F.; Wang, J.; Wu, T. A combination prediction model of long-term ionospheric foF2 based on entropy weight method. Entropy 2020, 22, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gao, P.; Song, C.; Cheng, C. Use of entropy in developing SDG-based indices for assessing regional sustainable development: A provincial case study of China. Entropy 2020, 22, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Jiang, S.; Jin, J.; Feng, P.; Ning, S. Decision-making of irrigation scheme for soybeans in the Huaibei plain based on grey entropy weight and grey relation–projection pursuit. Entropy 2019, 21, 877. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Dubey, R.; Singh, S.; Singh, S.; Prakash, C.; Nirsanametla, Y.; Królczyk, G.; Chudy, R. Multiple-Criteria Decision-Making and Sensitivity Analysis for Selection of Materials for Knee Implant Femoral Component. Materials 2021, 14, 2084. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, A.S.; Singh, S.; Kumar, R. Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations. Mater. Today-Proc. 2022, 50, 1248–1255. [Google Scholar] [CrossRef]
- Çankaya, M.N.; Korbel, J. On statistical properties of Jizba–Arimitsu hybrid entropy. Physica A 2017, 475, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; pp. 547–562. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Havrda, J.; Charvát, F. Quantification method of classification processes: Concept of structural a-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Kapur, J.N. Generalized entropy of order α and type β. Maths. Semi. 1967, 4, 79–84. [Google Scholar]
- Churchman, C.W.; Ackoff, R.L. An approximate measure of value. J. Oper. Res. Soc. Am. 1954, 2, 172–187. [Google Scholar] [CrossRef]
- Duckstein, L.; Opricovic, S. Multiobjective Optimization in River Basin Development. Water Resour. Res. 1980, 16, 14–20. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. The Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénièrie de la décision. Elaboration d’instruments d’aide à la décision. La méthode PROMETHEE. In L’aide à la Décision: Nature, Instruments et Perspectives d’Avenir; Nadeau, R., Landry, M., Eds.; Presses de l’Université Laval: Quebec City, QC, Canada, 1982; pp. 183–213. [Google Scholar]
- Roy, B. Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Rev. Fr. Inform. Rech. Opé. 1968, 8, 57–75. [Google Scholar]
- Podvezko, V. The comparative analysis of MCDA methods SAW and COPRAS. Eng. Econom. 2011, 22, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Stefano, N.M.; Casarotto Filho, N.; Vergara, L.G.L.; da Rocha, R.U.G. COPRAS (Complex Proportional Assessment): State of the art research and its applications. IEEE Lat. Am. Trans. 2015, 13, 3899–3906. [Google Scholar] [CrossRef]
- Escobar, M.T.; Moreno-Jimenéz, J.M. Aggregation of individual preference structures in AHP-group decision making. Group Decis. Negot. 2007, 16, 287–301. [Google Scholar] [CrossRef]
- COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 17 February 2022).
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 17 February 2022).
- European Centre for Disease Prevention and Control (ECDC). Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 17 February 2022).
- Worldometer-Coronavirus Update (Live). Available online: https://www.worldometers.info/coronavirus/ (accessed on 17 February 2022).
- Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 17 February 2022).
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Gao, Y. Consensus reaching for group decision making with multi-granular unbalanced linguistic information: A bounded confidence and minimum adjustment-based approach. Inf. Fusion 2021, 74, 96–110. [Google Scholar] [CrossRef]
Scale | Criteria |
---|---|
1 | Equal Importance |
3 | Moderate Importance |
5 | Strong Importance |
7 | Very Strong Importance |
9 | Absolute Importance |
2, 4, 6, 8 | Intermediate values |
1/2, …, 1/9 | Reciprocals of above |
Number of Criteria | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Average RI | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
European Countries | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Austria | 308.4294 | 378.1481 | 1.8043 | 28.0773 | 40344.41 |
Belgium | 334.3022 | 434.6661 | 1.3662 | 26.9196 | 5489.175 |
Bulgaria | 212.2888 | 267.2547 | 10.6268 | 62.8098 | 3425.509 |
Czechia | 235.7848 | 372.5565 | 2.5862 | 23.8699 | 8749.032 |
France | 191.4035 | 176.2033 | 0.8478 | 22.6953 | 7687.89 |
Germany | 157.3036 | 213.8961 | 1.2861 | 23.0129 | 1812.396 |
Italy | 69.1924 | 68.6557 | 0.6042 | 6.1044 | 3821.611 |
Romania | 193.1306 | 222.6808 | 7.53 | 46.6847 | 2116.905 |
Serbia | 326.6165 | 466.465 | 4.3935 | 20.9965 | 2211.028 |
Slovakia | 413.3236 | 603.5366 | 4.1888 | 20.776 | 6302.605 |
Spain | 245.1909 | 229.3405 | 1.1545 | 25.1098 | 2722.29 |
Switzerland | 156.6182 | 157.1383 | 0.3978 | 16.0821 | 3174.591 |
(a) | (b) | ||||||||||
C1 | C2 | C3 | C4 | C5 | C1 | C2 | C3 | C4 | C5 | ||
C1 | 1 | 2 | 1 | 1 | 1 | C1 | 1 | 1 | 1/2 | 1/2 | 3 |
C2 | 1/2 | 1 | 1 | 1 | 2 | C2 | 1 | 1 | 1/2 | 1/2 | 1 |
C3 | 1 | 1 | 1 | 2 | 3 | C3 | 2 | 2 | 1 | 2 | 5 |
C4 | 1 | 1 | 1/2 | 1 | 5 | C4 | 2 | 2 | 1/2 | 1 | 5 |
C5 | 1 | 1/2 | 1/3 | 1/5 | 1 | C5 | 1/3 | 1 | 1/5 | 1/5 | 1 |
(c) | (d) | ||||||||||
C1 | C2 | C3 | C4 | C5 | C1 | C2 | C3 | C4 | C5 | ||
C1 | 1 | 3 | 1/3 | 1/3 | 7 | C1 | 1 | 1 | 1/3 | 1/5 | 9 |
C2 | 1/3 | 1 | 1/5 | 1 | 3 | C2 | 1 | 1 | 1/5 | 1/5 | 5 |
C3 | 3 | 5 | 1 | 2 | 6 | C3 | 3 | 5 | 1 | 2 | 9 |
C4 | 3 | 1 | 1/2 | 1 | 5 | C4 | 5 | 5 | 1/2 | 1 | 7 |
C5 | 1/7 | 1/3 | 1/6 | 1/5 | 1 | C5 | 1/9 | 1/5 | 1/9 | 1/7 | 1 |
Criteria | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | 1.000 | 1.565 | 0.485 | 0.427 | 3.708 |
C2 | 0.639 | 1.000 | 0.376 | 0.562 | 2.340 |
C3 | 2.060 | 2.659 | 1.000 | 2.000 | 5.335 |
C4 | 2.340 | 1.778 | 0.500 | 1.000 | 5.439 |
C5 | 0.270 | 0.427 | 0.187 | 0.184 | 1.000 |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
WE1 | 0.2245 | 0.1830 | 0.2611 | 0.2302 | 0.1013 |
WE2 | 0.1601 | 0.1336 | 0.3594 | 0.2724 | 0.0745 |
WE3 | 0.1938 | 0.1128 | 0.4112 | 0.2414 | 0.0408 |
WE4 | 0.1258 | 0.0941 | 0.4064 | 0.3446 | 0.0292 |
W(GAHP) | 0.1712 | 0.1294 | 0.3736 | 0.2717 | 0.0541 |
a | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
0.5 | 0.0698 | 0.1094 | 0.3518 | 0.1035 | 0.3656 |
0.6 | 0.0680 | 0.1065 | 0.3440 | 0.1021 | 0.3794 |
0.7 | 0.0662 | 0.1038 | 0.3373 | 0.1006 | 0.3921 |
0.8 | 0.0642 | 0.1008 | 0.3309 | 0.0990 | 0.4051 |
0.9 | 0.0619 | 0.0975 | 0.3243 | 0.0970 | 0.4193 |
1 | 0.0592 | 0.0935 | 0.3170 | 0.0946 | 0.4357 |
µ | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
0 | 0.0698 | 0.1094 | 0.3518 | 0.1035 | 0.3656 |
0.1 | 0.0799 | 0.1114 | 0.3540 | 0.1203 | 0.3345 |
0.2 | 0.0901 | 0.1134 | 0.3561 | 0.1371 | 0.3033 |
0.3 | 0.1002 | 0.1154 | 0.3583 | 0.1539 | 0.2722 |
0.4 | 0.1103 | 0.1174 | 0.3605 | 0.1708 | 0.2410 |
0.5 | 0.1205 | 0.1194 | 0.3627 | 0.1876 | 0.2099 |
0.6 | 0.1306 | 0.1214 | 0.3649 | 0.2044 | 0.1787 |
0.7 | 0.1408 | 0.1234 | 0.3671 | 0.2212 | 0.1476 |
0.8 | 0.1509 | 0.1254 | 0.3692 | 0.2381 | 0.1164 |
0.9 | 0.1611 | 0.1274 | 0.3714 | 0.2549 | 0.0853 |
1 | 0.1712 | 0.1294 | 0.3736 | 0.2717 | 0.0541 |
European Countries | The COPRAS Results (with Different Criteria Weights Set) a = 0.5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
µ = 0 | µ = 0.1 | µ = 0.2 | µ = 0.3 | µ = 0.4 | µ = 0.5 | µ = 0.6 | µ = 0.7 | µ = 0.8 | µ = 0.9 | µ = 1 | |
Austria | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.876 | 0.712 | 0.551 |
Belgium | 0.243 | 0.254 | 0.267 | 0.282 | 0.301 | 0.323 | 0.352 | 0.389 | 0.385 | 0.366 | 0.346 |
Bulgaria | 0.099 | 0.101 | 0.103 | 0.106 | 0.110 | 0.114 | 0.119 | 0.126 | 0.118 | 0.105 | 0.093 |
Czechia | 0.276 | 0.283 | 0.291 | 0.301 | 0.313 | 0.328 | 0.347 | 0.371 | 0.354 | 0.322 | 0.290 |
France | 0.372 | 0.389 | 0.409 | 0.433 | 0.462 | 0.498 | 0.543 | 0.602 | 0.598 | 0.569 | 0.541 |
Germany | 0.190 | 0.205 | 0.223 | 0.245 | 0.271 | 0.302 | 0.343 | 0.395 | 0.409 | 0.406 | 0.403 |
Italy | 0.436 | 0.475 | 0.521 | 0.576 | 0.642 | 0.723 | 0.826 | 0.960 | 1.000 | 1.000 | 1.000 |
Romania | 0.079 | 0.083 | 0.087 | 0.092 | 0.097 | 0.105 | 0.114 | 0.126 | 0.124 | 0.118 | 0.111 |
Serbia | 0.101 | 0.106 | 0.113 | 0.121 | 0.131 | 0.143 | 0.158 | 0.178 | 0.180 | 0.174 | 0.168 |
Slovakia | 0.192 | 0.197 | 0.202 | 0.208 | 0.216 | 0.226 | 0.238 | 0.254 | 0.241 | 0.218 | 0.196 |
Spain | 0.215 | 0.229 | 0.246 | 0.267 | 0.292 | 0.322 | 0.361 | 0.411 | 0.420 | 0.412 | 0.404 |
Switzerland | 0.413 | 0.442 | 0.475 | 0.515 | 0.564 | 0.625 | 0.702 | 0.802 | 0.823 | 0.810 | 0.798 |
European Countries | The Rank of COPRAS Results (with Different Criteria Weights Set) a = 0.5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
µ = 0 (EEWM) | µ = 0.1 | µ = 0.2 | µ = 0.3 | µ = 0.4 | µ = 0.5 | µ = 0.6 | µ = 0.7 | µ = 0.8 | µ = 0.9 | µ = 1 (GAHP) | |
Austria | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 |
Belgium | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 |
Bulgaria | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 |
Czechia | 5 | 5 | 5 | 5 | 5 | 5 | 7 | 8 | 8 | 8 | 8 |
France | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Germany | 9 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | 6 |
Italy | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 |
Romania | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 11 |
Serbia | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Slovakia | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
Spain | 7 | 7 | 7 | 7 | 7 | 7 | 5 | 5 | 5 | 5 | 5 |
Switzerland | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 |
European Countries | EEWM | EWM | ||||
---|---|---|---|---|---|---|
a = 0.5 | a = 0.6 | a = 0.7 | a = 0.8 | a = 0.9 | a = 1 | |
Austria | 1 | 1 | 1 | 1 | 1 | 1 |
Belgium | 6 | 6 | 6 | 6 | 6 | 6 |
Bulgaria | 11 | 10 | 10 | 10 | 10 | 10 |
Czechia | 5 | 5 | 5 | 5 | 5 | 5 |
France | 4 | 4 | 4 | 4 | 4 | 4 |
Germany | 9 | 9 | 9 | 9 | 9 | 9 |
Italy | 2 | 2 | 2 | 2 | 2 | 2 |
Romania | 12 | 12 | 12 | 12 | 12 | 12 |
Serbia | 10 | 11 | 11 | 11 | 11 | 11 |
Slovakia | 8 | 8 | 8 | 8 | 8 | 7 |
Spain | 7 | 7 | 7 | 7 | 7 | 8 |
Switzerland | 3 | 3 | 3 | 3 | 3 | 3 |
European Countries | VIKOR | TOPSIS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EEWM | EWM | EEWM | EWM | |||||||||
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
Austria | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Belgium | 5 | 5 | 5 | 5 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 |
Bulgaria | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Czechia | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 4 | 3 | 3 | 3 | 3 |
France | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Germany | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 8 | 8 | 8 | 8 | 8 |
Italy | 4 | 4 | 4 | 4 | 5 | 5 | 3 | 3 | 4 | 4 | 4 | 4 |
Romania | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
Serbia | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Slovakia | 8 | 7 | 7 | 7 | 7 | 7 | 9 | 9 | 9 | 9 | 9 | 9 |
Spain | 7 | 8 | 8 | 8 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 7 |
Switzerland | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 5 | 5 | 5 | 5 | 5 |
European Countries | I1 | I1 Rank | I2 | I2 Rank | I3 | I3 Rank | I4 | I4 Rank | I5 | I5 Rank | I6 | I6 Rank |
Austria | 59,171.006 | 4 | 56.457 | 4 | 106.749 | 8 | 44.4 | 5 | 19.202 | 6 | 45,436.686 | 2 |
Belgium | 66,140.159 | 1 | 46.863 | 6 | 375.564 | 1 | 41.8 | 10 | 18.571 | 8 | 42,658.576 | 4 |
Bulgaria | 20,621.523 | 12 | 41.222 | 10 | 65.18 | 12 | 44.7 | 4 | 20.801 | 3 | 18,563.307 | 11 |
Czechia | 51,762.378 | 8 | 34.712 | 12 | 137.176 | 5 | 43.3 | 6 | 19.027 | 7 | 32,605.906 | 8 |
France | 53,305.963 | 6 | 57.74 | 3 | 122.578 | 6 | 42 | 9 | 19.718 | 4 | 38,605.671 | 5 |
Germany | 60,714.67 | 3 | 60.345 | 1 | 237.016 | 2 | 46.6 | 2 | 21.453 | 2 | 45,229.245 | 3 |
Italy | 56,522.685 | 5 | 59.984 | 2 | 205.859 | 4 | 47.9 | 1 | 23.021 | 1 | 35,220.084 | 6 |
Romania | 30,956.606 | 11 | 51.767 | 5 | 85.129 | 10 | 43 | 8 | 17.85 | 10 | 23,313.199 | 10 |
Serbia | 41,966.813 | 10 | 37.51 | 11 | 80.291 | 11 | 41.2 | 11 | 17.366 | 11 | 14,048.881 | 12 |
Slovakia | 42,070.169 | 9 | 42.319 | 9 | 113.128 | 7 | 41.2 | 11 | 15.07 | 12 | 30,155.152 | 9 |
Spain | 62,134.074 | 2 | 46.704 | 7 | 93.105 | 9 | 45.5 | 3 | 19.436 | 5 | 34,272.36 | 7 |
Switzerland | 52,368.273 | 7 | 44.393 | 8 | 214.243 | 3 | 43.1 | 7 | 18.436 | 9 | 57,410.166 | 1 |
µ | I1 | I2 | I3 | I4 | I5 | I6 |
0 | 0.5245 | 0.3007 | 0.5035 | 0.2312 | 0.2727 | 0.7203 |
0.1 | 0.5664 | 0.3566 | 0.5385 | 0.2977 | 0.3427 | 0.7622 |
0.2 | 0.5664 | 0.3566 | 0.5385 | 0.2977 | 0.3427 | 0.7622 |
0.3 | 0.5664 | 0.3566 | 0.5385 | 0.2977 | 0.3427 | 0.7622 |
0.4 | 0.5664 | 0.3566 | 0.5385 | 0.2977 | 0.3427 | 0.7622 |
0.5 | 0.5664 | 0.3566 | 0.5385 | 0.2977 | 0.3427 | 0.7622 |
0.6 | 0.6503 | 0.4266 | 0.4825 | 0.3398 | 0.3706 | 0.7762 |
0.7 | 0.6783 | 0.5734 | 0.5105 | 0.3958 | 0.3986 | 0.8252 |
0.8 | 0.6713 | 0.5874 | 0.5385 | 0.4238 | 0.4336 | 0.7972 |
0.9 | 0.6503 | 0.5594 | 0.5734 | 0.4098 | 0.4126 | 0.8042 |
1 | 0.6503 | 0.5594 | 0.5734 | 0.4098 | 0.4126 | 0.8042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulescu, C.Z.; Radulescu, M.; Boncea, R. A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic. Entropy 2022, 24, 642. https://doi.org/10.3390/e24050642
Radulescu CZ, Radulescu M, Boncea R. A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic. Entropy. 2022; 24(5):642. https://doi.org/10.3390/e24050642
Chicago/Turabian StyleRadulescu, Constanta Zoie, Marius Radulescu, and Radu Boncea. 2022. "A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic" Entropy 24, no. 5: 642. https://doi.org/10.3390/e24050642
APA StyleRadulescu, C. Z., Radulescu, M., & Boncea, R. (2022). A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic. Entropy, 24(5), 642. https://doi.org/10.3390/e24050642