Impact of Multi-Component Surrogates on the Performances, Pollutants, and Exergy of IC Engines
Abstract
:1. Introduction
2. Governing Equations and Models
2.1. Transport Equations
2.2. Combustion Models
Turbulent Flame Speeds
2.3. Surrogate Fuel Generation
2.3.1. Surrogate Blend Optimization Formulation
2.3.2. Surrogate Diesel Fuel
2.4. Energy and Exergy Analysis
2.4.1. Energy Analysis
2.4.2. Exergy Analysis
2.4.3. Exergy Efficiency
3. Sandia Optical Engine Specification
3.1. Computational Domain
3.2. Boundary Conditions
4. Results and Discussion
4.1. Pressure
4.2. Heat Release Rate (HRR)
4.3. Vapor Penetration
4.4. Maximum and Mean Temperatures
4.5. Temperature Contours
4.6. CO Mass Fraction
4.7. Unburned Hydrocarbon (UBHC) Mass Fraction
4.8. Energy Efficiency
4.9. Exergy Efficiency
5. Conclusions
- (1)
- Predicted-1 (30% of aromatics and 70% n-alkanes): this RM has 1883 species and 8254 reactions;
- (2)
- Predicted-2 (aromatics, cycloalkanes, iso-alkanes, and n-alkanes): this RM has 1883 species and 8254 reactions;
- (3)
- Predicted-3 (aromatics, iso-alkanes, and n-alkanes): involves 1883 species and 8254 reactions;
- (4)
- Predicted-4 (aromatics, 1 ether, 1 iso-alkane, and 2 composition n-alkanes): this RM has 445 species and 3562 reactions;
- (5)
- Predicted-5 (1 component of aromatics, 1 cycloalkane, and 2 composition n-alkanes): this RM has 5384 species and 68,885 reactions.
- The fourth and fifth predicted surrogates show a better agreement with the experiment. They also produce lower pollutant concentrations than the other RMs.
- Cetane number (CN) plays a crucial role in combustion behavior. Lower cetane numbers (Predicted-1, -2, and -3) lead to an important ignition delay time, thus lowering the heat release rate (HRR). A higher CN results in a shorter ignition delay so that the HRR is increased. In opposition to pressure and heat release rate, a smaller variation of temperature is observed for all reaction mechanisms
- Vapor penetration length is not influenced by the surrogate fuel’s physical properties. This result is consistent with the experimental data.
- The highest exergy efficiency, 47%, is obtained by the fifth surrogate. This reaction mechanism produces an important pressure increase. The exergy variation of the different reaction mechanisms mimics well the behaviors of the pressure variations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
RM | Reaction Mechanism |
RNG | Re-Normalization Group |
HRR | Heat Release Rate |
DI | Direct Injection |
EVO | Exhaust Valve Opening |
IVC | Intake Valve Closing |
KH-RT | Kelvin-Helmholtz-Rayleigh Taylor |
ICE | Internal Combustion Engine |
DOI | Duration Of Injection |
CI | Compression Ignition |
CO2 | Carbon Dioxide |
CO | Carbon Monoxide |
NOx | Nitric Oxides |
LHV | Lower Heating Value |
CA | Crank Angle |
TDC | Top Dead Center |
ATDC | After Top Dead Center |
BTDC | Before Top Dead center |
CN | Cetane Number |
TSI | Threshold Soot Index |
LTC | Low Temperature Combustion |
UBHC | Unburned Hydrocarbon |
RANS | Reynolds Averaged Navier-Stokes |
SBO | Surrogate Blend Optimizer |
CFD | Computational Fluid Dynamics |
SOI | Start Of Injection |
References
- Pei, Y.; Mehl, M.; Liu, W.; Lu, T.; Pitz, W.J.; Som, S. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications. J. Eng. Gas Turbines Power 2015, 137, 111502. [Google Scholar] [CrossRef] [Green Version]
- Szymkowicz, P.G.; Benajes, J. Development of a Diesel Surrogate Fuel Library. Fuel 2018, 222, 21–34. [Google Scholar] [CrossRef]
- Mehl, M.; Pitz, W.J.; Westbrook, C.K.; Curran, H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions. Proc. Combust. Inst. 2011, 33, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Gheraissa, N.; Bouras, F.; Khaldi, F.; Hidouri, A. A Comparative Study of the Combustion Supplied by Multi-Fuels: Computational Analysis. Energy Rep. 2021, 7, 3819–3832. [Google Scholar] [CrossRef]
- Bioethanol, C.; Kul, B.S.; Kahraman, A. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends. Entropy 2016, 18, 387. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Z.; Han, D. Effects of Mechanism Reduction on the Exergy Losses Analysis in N-Heptane Autoignition Processes. Int. J. Engine Res. 2020, 21, 1764–1777. [Google Scholar] [CrossRef]
- Kooshkbaghi, M.; Frouzakis, C.E.; Boulouchos, K.; Karlin, I.V. Entropy Production Analysis for Mechanism Reduction. Combust. Flame 2014, 161, 1507–1515. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Reitz, R.D. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion. Int. J. Spray Combust. Dyn. 2009, 1, 283–316. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Rutland, C. Numerical Study of Diesel Combustion Regimes. SAE Tech. Pap. 2011. [Google Scholar] [CrossRef]
- Zhou, C.W.; Li, Y.; O’Connor, E.; Somers, K.P.; Thion, S.; Keesee, C.; Mathieu, O.; Petersen, E.L.; DeVerter, T.A.; Oehlschlaeger, M.A.; et al. A Comprehensive Experimental and Modeling Study of Isobutene Oxidation. Combust. Flame 2016, 167, 353–379. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhou, S.; Xi, H.; Shreka, M.; Zhang, Z. Chemical Kinetic Study on Dual-Fuel Combustion: The Ignition Properties of n-Dodecane/Methane Mixture. Int. J. Chem. Eng. 2021, 2021, 7100812. [Google Scholar] [CrossRef]
- Singh, S.; Reitz, R.D. Comparison of Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Multi-Mode Combustion in a Heavy-Duty, DI Diesel Engine. SAE Int. J. Fuels Lubr. 2007, 115, 24. [Google Scholar] [CrossRef]
- Slavinskaya, N.A.; Zizin, A.; Aigner, M. On Model Design of a Surrogate Fuel Formulation. J. Eng. Gas Turbines Power 2010, 132, 111501. [Google Scholar] [CrossRef]
- Javed, T.; Lee, C.; AlAbbad, M.; Djebbi, K.; Beshir, M.; Badra, J.; Curran, H.; Farooq, A. Ignition Studies of N-Heptane/Iso-Octane/Toluene Blends. Combust. Flame 2016, 171, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Das, D.D.; McEnally, C.S.; Pfefferle, L.D. Sooting Tendencies of Unsaturated Esters in Nonpremixed Flames. Combust. Flame 2015, 162, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.J.; Cannella, W.J.; Bruno, T.J.; Bunting, B.; Dettman, H.D.; Franz, J.A.; Huber, M.L.; Natarajan, M.; Pitz, W.J.; Ratcli, M.A.; et al. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics. Energy Fuels 2012, 26, 3284–3303. [Google Scholar] [CrossRef]
- Fattahi, A.; Karimi, N.; Hajialigol, N. Dynamics of Entropy Wave Generation in a Simplified Model of Gas Turbine Combustor: A Theoretical Investigation. Phys. Fluids 2020, 32, 106107. [Google Scholar] [CrossRef]
- Herbinet, O.; Pitz, W.J.; Westbrook, C.K. Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate. Combust. Flame 2008, 154, 507–528. [Google Scholar] [CrossRef] [Green Version]
- Abboud, J.; Schobing, J.; Legros, G.; Bonnety, J.; Tschamber, V.; Brillard, A.; Leyssens, G.; Lauga, V.; Iojoiu, E.E.; Da Costa, P. Impacts of Oxygenated Compounds Concentration on Sooting Propensities and Soot Oxidative Reactivity: Application to Diesel and Biodiesel Surrogates. Fuel 2017, 193, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Su, W. Numerical Study on Exergy Losses of N-Heptane Constant-Volume Combustion by Detailed Chemical Kinetics. Energy Fuels 2014, 28, 6635–6643. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Z.; Min, K.; Han, D. Dilution, Thermal, and Chemical Effects of Carbon Dioxide on the Exergy Destruction in n-Heptane and Iso-Octane Autoignition Processes: A Numerical Study. Energy Fuels 2018, 32, 5559–5570. [Google Scholar] [CrossRef]
- Li, Y.; Jia, M.; Chang, Y.; Kokjohn, S.L.; Reitz, R.D. Thermodynamic Energy and Exergy Analysis of Three Different Engine Combustion Regimes. Appl. Energy 2016, 180, 849–858. [Google Scholar] [CrossRef]
- Xu, G.; Jia, M.; Li, Y.; Xie, M.; Su, W. Multi-Objective Optimization of the Combustion of a Heavy-Duty Diesel Engine with Low Temperature Combustion (LTC) under a Wide Load Range: (II) Detailed Parametric, Energy, and Exergy Analysis. Energy 2017, 139, 247–261. [Google Scholar] [CrossRef]
- CHEMKIN. Chemkin Manual; CHEMKIN: San Diego, CA, USA, 2016; pp. 37–40. [Google Scholar]
- Taylor, P.; Han, Z.; Reitz, R.D. Combustion Science and Technology Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Turbulence Modeling of Internal Combustion Engines Using RNG k-E Models. Combust. Sci. Technol. 2007, 106, 261–295. [Google Scholar] [CrossRef]
- Kolhe, A.V.; Shelke, R.E.; Khandare, S.S. Combustion Modeling with CFD in Direct Injection CI Engine Fuelled with Biodiesel. Jordan J. Mech. Ind. Eng. 2015, 9, 61–66. [Google Scholar]
- Yılmaz, S. ScienceDirect Emission and Performance Estimation in Hydrogen Injection Strategies on Diesel Engines. Int. J. Hydrogen Energy 2020, 46, 29732–29744. [Google Scholar] [CrossRef]
- Abianeh, O.S.; Chen, C.P. A Discrete Multicomponent Fuel Evaporation Model with Liquid Turbulence Effects. Int. J. Heat Mass Transf. 2012, 55, 6897–6907. [Google Scholar] [CrossRef]
- Dempsey, A.B.; Walker, N.R.; Reitz, R. Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion. SAE Int. J. Fuels Lubr. 2013, 6, 170–187. [Google Scholar] [CrossRef]
- Yoon, S.H.; Cha, J.P.; Lee, C.S. An Investigation of the Effects of Spray Angle and Injection Strategy on Dimethyl Ether (DME) Combustion and Exhaust Emission Characteristics in a Common-Rail Diesel Engine. Fuel Process. Technol. 2010, 91, 1364–1372. [Google Scholar] [CrossRef]
- Hidouri, A.; Yahya, N.; Boushaki, T.; Sadiki, A.; Sautet, J.C. Numerical and Experimental Investigation of Turbulent Three Separated Jets. Appl. Therm. Eng. 2016, 104, 153–161. [Google Scholar] [CrossRef]
- Peters, N. Turbulent Combustion; Springer: Cambridge, UK, 2000; p. 322. ISBN 0511019270. [Google Scholar]
- Tan, Z.; Reitz, R.D. An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling. Combust. Flame 2006, 145, 1–15. [Google Scholar] [CrossRef]
- Liang, L.; Reitz, R.D. Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry. In Proceedings of the 2006 SAE World Congress, Detroit, MI, USA, 3–6 April 2006. [Google Scholar] [CrossRef]
- Xu, C.; Zhong, A.; Wang, C.; Jiang, C.; Li, X.; Zhou, K.; Huang, Y. Combustion Characteristics and Laminar Flame Speed of Premixed Ethanol-Air Mixtures with Laser-Induced Spark Ignition. Biofuels Eng. 2017, 2, 63–72. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Giakoumis, E.G. Second-Law Analyses Applied to Internal Combustion Engines Operation. Prog. Energy Combust. Sci. 2006, 32, 2–47. [Google Scholar] [CrossRef]
- Del Pecchia, M.; Pessina, V.; Iacovano, C.; Cantore, G. Development of Gasoline-Ethanol Blends Laminar Flame Speed Correlations at Full-Load Si Engine Conditions via 1D Simulations. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2191. [Google Scholar] [CrossRef]
- Lapointe, S.; Zhang, K.; McNenly, M.J. Reduced Chemical Model for Low and High-Temperature Oxidation of Fuel Blends Relevant to Internal Combustion Engines. Proc. Combust. Inst. 2019, 37, 789–796. [Google Scholar] [CrossRef]
- Curran, H.J.; Gaffuri, P.; Pitz, W.J.; Westbrook, C.K. A Comprehensive Modeling Study of N-Heptane Oxidation. Combust. Flame 1998, 114, 149–177. [Google Scholar] [CrossRef]
- Ansys. Ansys Model Fuel Library Validation Manual; Ansys: Canonsburg, PA, USA, 2019; Volume 1, p. 202. [Google Scholar]
- Nadimi, E.; Jafarmadar, S. Thermal and Exergy Assessment of a Micro Combustor Fueled by Premixed Hydrogen/Air under Different Sizes: A Numerical Simulation. J. Appl. Fluid Mech. 2020, 13, 1233–1243. [Google Scholar] [CrossRef]
- Shabgard, H.; Faghri, A. Exergy Analysis In Energy Systems: Fundamentals And Application. Front. Heat Mass Transf. 2019, 9, 2151–8629. [Google Scholar] [CrossRef]
- Özkan, M. Engine Performed with Different Multiple Injection Strategies. Entropy 2015, 17, 244–263. [Google Scholar] [CrossRef]
- Ma, B.; Yao, A.; Yao, C.; Wu, T.; Wang, B.; Gao, J.; Chen, C. A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines. Appl. Energy 2020, 261, 114483. [Google Scholar] [CrossRef]
- Das, A.K.; Hansdah, D.; Mohapatra, A.K.; Panda, A.K. Energy, Exergy and Emission Analysis on a DI Single Cylinder Diesel Engine Using Pyrolytic Waste Plastic Oil Diesel Blend. J. Energy Inst. 2020, 93, 1624–1633. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Tian, J.; Xu, Y.; Yang, Z.; Wang, P. Investigations of Energy, Exergy Distribution Characteristics of Overall Working Conditions and Effect of Key Boundary Parameters on Residual Energy Availability in an Automotive Turbocharged Diesel Engine. Appl. Therm. Eng. 2020, 174, 115352. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Dabi, M.; Saha, U.K. A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines. J. Energy Resour. Technol. 2021, 143, 120801. [Google Scholar] [CrossRef]
- Odibi, C.; Babaie, M.; Zare, A.; Nabi, M.N.; Bodisco, T.A.; Brown, R.J. Exergy Analysis of a Diesel Engine with Waste Cooking Biodiesel and Triacetin. Energy Convers. Manag. 2019, 198, 111912. [Google Scholar] [CrossRef]
- Zapata-Mina, J.; Restrepo, A.; Romero, C.; Quintero, H. Exergy Analysis of a Diesel Engine Converted to Spark Ignition Operating with Diesel, Ethanol, and Gasoline/Ethanol Blends. Sustain. Energy Technol. Assess. 2020, 42, 100803. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Kosmadakis, G.M.; Giakoumis, E.G. Exergy Assessment of Combustion and EGR and Load Effects in DI Diesel Engine Using Comprehensive Two-Zone Modeling. Energy 2020, 202, 117685. [Google Scholar] [CrossRef]
- Nabi, M.N.; Rasul, M.G.; Arefin, M.A.; Akram, M.W.; Islam, M.T.; Chowdhury, M.W. Investigation of Major Factors That Cause Diesel NOx Formation and Assessment of Energy and Exergy Parameters Using E-Diesel Blends. Fuel 2021, 292, 120298. [Google Scholar] [CrossRef]
Fuel Property | Units | Baselines Diesel Fuel (Measured) | Baselines Diesel Fuel Surr. (Predicted-1) | Baselines Diesel Fuel Surr. (Predicted-2) | Baselines Diesel Fuel Surr. (Predicted-3) | Baselines Diesel Fuel Surr. (Predicted-4) | Baselines Diesel Fuel Surr. (Predicted-5) |
---|---|---|---|---|---|---|---|
Cetane Number | 50.9 | 43.69 | 50.42 | 61.36 | 47.54 | 62.92 | |
Smoker Point | mm | 19.0 | |||||
Threshold Soot Index | 31.0 | 31.1566 | 31.0956 | 27.0859 | |||
Lower Heating Value | MJ/kg | 43.004 | 43.46 | 44.09 | 44.22 | 44.62 | 43.46 |
Density at 15 °C | g/mL | 0.849 | 0.7565 | 0.8061 | 0.8033 | 0.7765 | 0.7819 |
Kinetic Viscosity at 40 °C | cSt | 3.06 | 2.9263 | 2.9460 | 2.9819 | 1.2263 | |
Kinetic Viscosity at 40 °C | cSt | 0.99 | |||||
Surface Tension | N/m | 0.0312 | |||||
Lubricity—Wear Scar Diameter | μm | 489 | |||||
T10 | °C | 226.8 | 193.9 | 144.9 | 219.5 | 174.6 | |
T90 | °C | 311.7 | 276.4 | 279 | 274.2 | 210.3 | |
Alkane Hydrocarbons | %v/v | 76.0 | |||||
Alkene Hydrocarbons | %v/v | 7.5 | |||||
Aromatic Hydrocarbons | %v/v | 16.5 | |||||
Total Aromatics | %m/m | 16.4 | |||||
Mono-Cyclic Aromatics | %m/m | 16.2 | |||||
Polycyclic Aromatics | %m/m | 0.2 | |||||
Carbon Content | %m/m | 86.38 | |||||
Hydrogen Content | %m/m | 13.42 | |||||
Sulfur Content | ppm | 9.4 | |||||
H/C Molar Ratio | molR | 1.85 | 1.8344 | 1.9287 | 1.9252 | 2.1239 | 1.8764 |
Stoichiometric A/F Ratio | 14.58 |
Item | Description |
---|---|
Engine base type | Cummins N-14, DI Diesel |
Number of cylinders | 1 |
Swirl ratio | 0.5 |
Bore × Stroke | 13.97 cm × 15.24 cm |
Bowl width | 9.78 cm |
Bowl depth | 1.55 cm |
Geometric compression ratio | 11.2:1 |
Simulated compression ratio† | 16:1 |
Number of holes | 8, equally spaced |
Nozzle orifice diameter | 0.196 mm |
Item | Early-Inj. Low-T |
---|---|
Engine Speed (rpm) | 1200 |
IMEP (bar) | 3.9 |
Intake temperature (C) | 90 |
Intake pressure (kPa) | 214 |
SOI (CAD ATDC) | −22 |
Injection quantity (mg) | 56 |
DOI | 7 |
Conc. (Vol. %) | 12.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondo, K.; Agrebi, S.; Hamdi, F.; Lakhal, F.; Sadiki, A.; Chrigui, M. Impact of Multi-Component Surrogates on the Performances, Pollutants, and Exergy of IC Engines. Entropy 2022, 24, 671. https://doi.org/10.3390/e24050671
Mondo K, Agrebi S, Hamdi F, Lakhal F, Sadiki A, Chrigui M. Impact of Multi-Component Surrogates on the Performances, Pollutants, and Exergy of IC Engines. Entropy. 2022; 24(5):671. https://doi.org/10.3390/e24050671
Chicago/Turabian StyleMondo, Kambale, Senda Agrebi, Fathi Hamdi, Fatma Lakhal, Amsini Sadiki, and Mouldi Chrigui. 2022. "Impact of Multi-Component Surrogates on the Performances, Pollutants, and Exergy of IC Engines" Entropy 24, no. 5: 671. https://doi.org/10.3390/e24050671
APA StyleMondo, K., Agrebi, S., Hamdi, F., Lakhal, F., Sadiki, A., & Chrigui, M. (2022). Impact of Multi-Component Surrogates on the Performances, Pollutants, and Exergy of IC Engines. Entropy, 24(5), 671. https://doi.org/10.3390/e24050671