Statistical Modeling of the Seismic Moments via Mathai Distribution
Abstract
:1. Introduction
2. Pareto–Mathai Distribution
3. Properties of Pareto–Mathai Distribution
3.1. Multivariate Pareto–Mathai Distribution
3.2. Parameter Estimation
4. Application
4.1. Cumulative Probability
4.2. Density Probability
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G. Superstatistics. Phys. A 2003, 322, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 2005, 396, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, N.; Nair, S.S.; Joseph, D.P. An Overview of the Pathway Idea and Its Applications in Statistical and Physical Sciences. Axioms 2015, 4, 530–553. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Phys. A 2007, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M.; Haubold, H.J. On generalized distributions and pathways. Phys. Lett. A 2008, 372, 2109–2113. [Google Scholar] [CrossRef] [Green Version]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Beck, C. Superstatistics: Theory and applications. Contin. Mech. Thermodyn. 2004, 16, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; França, G.S.; Vilar, C.S.; Alcaniz, J.S. Nonextensive models for earthquakes. Phys. Rev. E 2006, 73, 026102. [Google Scholar] [CrossRef] [Green Version]
- Telesca, L. Tsallis-based nonextensive analysis of the Southern California seismicity. Entropy 2011, 13, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Felgueiras, M.M. Explaining the seismic moment of large earthquakes by heavy and extremely heavy tailed models. GEM-Int. J. Geomath. 2012, 3, 209–222. [Google Scholar] [CrossRef]
- Sánchez, E.; Vega-Jorquera, P. New Bayesian frequency-magnitude distribution model for earthquakes applied in Chile. Phys. A 2018, 508, 305–312. [Google Scholar] [CrossRef]
- Bashir, S.; Batool Naqvi, I. The Gompertz Inverse Pareto Distribution and Extreme Value Theory. Am. Rev. Math. Stat. 2018, 6, 30–37. [Google Scholar] [CrossRef]
- Salahuddin, N.; Khalil, A.; Khan Mashwani, W.; Alrajhi, S.; Al-Marzouki, S.; Shah, K. On the Properties of the New Generalized Pareto Distribution and Its Applications. Math. Probl. Eng. 2021, 2021, 6855652. [Google Scholar] [CrossRef]
- Rana, S.; Hanif Shahbaz, S.; Qaiser Shahbaz, M.; Mahabubur Rahman, M. Pareto-Weibull Distribution with Properties and Applications: A Member of Pareto-X Family. Pak. J. Stat. Oper. Res. 2022, 18, 121–132. [Google Scholar] [CrossRef]
- Gibowicz, S.J.; Kijko, A. An Introduction to Mining Seismology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Consul, P.C.; Jain, G.C. On the log-gamma distribution and its properties. Stat. Hefte 1971, 12, 100–106. [Google Scholar] [CrossRef]
- Joseph, D.P. Multivariate extended gamma distribution. Axioms 2017, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- De la Barra, E.; Vega-Jorquera, P. On q-pareto distribution: Some properties and application to earthquakes. Eur. Phys. J. B 2021, 94, 1–9. [Google Scholar] [CrossRef]
- Woodward, K.R.; Tierney, S.R. Seismic hazard estimation using databases with bimodal frequency-magnitude behaviour. In Proceedings of the 1st International Conference on Underground Mining Technology, Sudbury, ON, Canada, 11–13 October 2017; pp. 219–232. [Google Scholar]
- Yamaguchi, J.; Naoi, M.; Nakatani, H.; Moriya, M.; Igarashi, T.; Murakami, O.; Yabe, Y.; Durrheim, R.; Ogasawara, H. Emergence and disappearance of very small repeating earthquakes on a geological fault in a gold mine in South Africa. Tectonophysics 2018, 747, 318–326. [Google Scholar] [CrossRef]
- Richardson, E.; Jordan, T.H. Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 1766–1782. [Google Scholar] [CrossRef]
Minimum | Maximum | |||
---|---|---|---|---|
Sector | Magnitude | Seismic Moment | Magnitude | Seismic Moment |
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 |
Sector | RMSE | MAPE(%) | |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
1–5 |
Sector | Completeness Magnitude | Completeness Seismic Moment |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Jorquera, P.; De la Barra, E.; Torres, H.; Vásquez, Y. Statistical Modeling of the Seismic Moments via Mathai Distribution. Entropy 2022, 24, 695. https://doi.org/10.3390/e24050695
Vega-Jorquera P, De la Barra E, Torres H, Vásquez Y. Statistical Modeling of the Seismic Moments via Mathai Distribution. Entropy. 2022; 24(5):695. https://doi.org/10.3390/e24050695
Chicago/Turabian StyleVega-Jorquera, Pedro, Erick De la Barra, Héctor Torres, and Yerko Vásquez. 2022. "Statistical Modeling of the Seismic Moments via Mathai Distribution" Entropy 24, no. 5: 695. https://doi.org/10.3390/e24050695
APA StyleVega-Jorquera, P., De la Barra, E., Torres, H., & Vásquez, Y. (2022). Statistical Modeling of the Seismic Moments via Mathai Distribution. Entropy, 24(5), 695. https://doi.org/10.3390/e24050695