Quantum Models à la Gabor for the Space-Time Metric
Abstract
:1. Introduction
2. From Signal Analysis and Reconstruction to Integral Quantization
3. Gabor Quantization of Functions of Time-Frequency Variables
3.1. Gabor Quantization
3.2. Gabor Semi-Classical Portrait
4. Beyond Gabor: The Weyl-Heisenberg Covariant Integral Quantization of the Time-Frequency Plane
5. Probabilistic Aspects
6. The Eight-Dimensional Case and General Relativity
7. The Example of the Uniformly Accelerated Reference System
“Every field, in our opinion, must therefore adhere to the fundamental principle that singularities of the field are to be excluded.”
8. The Example of the Schwarzschild Metric Field
- Regularization at the Schwarzschild Radius Value
- Behaviour at Large r
- Behaviour at
- If , i.e., , then the temporal term of the Schwarzschild metric is completely regularized.
- If , i.e., , then there is a smaller “Schwarzschild radius” for the temporal part, defined by the equation
9. Final Discussion
“… infinities in General relativity come in the form of singularities [38] and they point to the breakdown of our current understanding of gravity. The standard view in the community is that quantum gravity should be able to resolve this issue by smoothing out singularities. Nonetheless, despite the many existing approaches to quantum gravity, there is no consensus about what it is and how one should construct a quantum theory of spacetime, thus a proof of principle for the singularity avoidance is yet to be found.”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UIR | Unitary Irreducible Representation |
POVM | Positive Operator-Valued Measure |
CCR | Canonical Commutation Rule |
GR | General Relativity |
References
- Howe, R. On the role of the Heisenberg group in harmonic analysis. Bull. Am. Math. Soc. 1980, 3, 821–843. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, H.; Gazeau, J.-P. Integral quantizations with two basic examples. Ann. Phys. 2014, 344, 43. [Google Scholar] [CrossRef] [Green Version]
- Werner, R. Quantum harmonic analysis on phase space. J. Math. Phys. 1984, 25, 1404–1411. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Werner, K. Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor Analysis and Algorithms; Feichtinger, H.G., Strohmer, T., Eds.; Birkhäuser: Boston, MA, USA, 1998; pp. 233–266. [Google Scholar]
- Luef, F.; Skrettingland, E. Convolutions for localization operators. J. Math. Pures Appl. 2018, 118, 288–316. [Google Scholar] [CrossRef] [Green Version]
- Klauder, J.R. Continuous-Representation Theory II. Generalized Relation Between Quantum and Classical Dynamics. J. Math. Phys. 1963, 4, 1058–1073. [Google Scholar] [CrossRef]
- Klauder, J.R. Continuous-Representation Theory III. On Functional Quantization of Classical Systems. J. Math. Phys. 1964, 5, 177–187. [Google Scholar] [CrossRef]
- Berezin, F.A. General concept of quantization. Commun. Math. Phys. 1975, 40, 153–174. [Google Scholar] [CrossRef]
- Daubechies, I.; Grossmann, A. An integral transform related to quantization. J. Math. Phys. 1980, 21, 2080–2090. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I.; Grossmann, A.; Reignier, J. An integral transform related to quantization. II. Some mathematical properties. J. Math. Phys. 1983, 24, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.-P. From classical to quantum models: The regularising rôle of integrals, symmetry and probabilities. Found. Phys. 2018, 48, 1648–1667. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.-P.; Koide, T.; Noguera, D. Quantum Smooth Boundary Forces from Constrained Geometries. J. Phys. A Math. Theor. 2019, 52, 445203. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, H.; Czuchry, E.; Gazeau, J.-P.; Małkiewicz, P. Quantum Mixmaster as a Model of the Primordial Universe. Universe 2020, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.-P.; Hussin, V.; Moran, J.; Zelaya, K. Quantum and semi-classical aspects of confined systems with variable mass. J. Phys. A Math. Theor. 2020, 53, 505306. [Google Scholar] [CrossRef]
- Gazeau, J.-P.; Habonimana, C. Signal analysis and quantum formalism: Quantizations with no Planck constant. In Landscapes of Time-Frequency Analysis; Boggiatto, P., Bruno, T., Cordero, E., Feichtinger, H.G., Nicola, F., Oliaro, A., Tabacco, A., Vallarino, M., Eds.; Birkhäuser: Cham, Switzerland, 2020; pp. 135–155. [Google Scholar]
- Gazeau, J.-P.; Hussin, V.; Moran, J.; Zelaya, K. Two-mode squeezed state quantization and semiclassical portraits. Ann. Phys. 2022, 441, 168888. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; Springer Science & Business Media: Berlin, Germany, 2011; Volume 1. [Google Scholar]
- Gazeau, J.P.; Heller, B. Positive-operator valued measure (POVM) quantization. Axioms 2015, 4, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Busch, P.; Lahti, P.; Pellonpää, J.-P.; Ylinen, K. Quantum Measurement; Springer: Berlin/Heidelberg, Germany, 2016; Volume 23. [Google Scholar]
- Akhiezer, N.I.; Glazman, I.M. Theory of Linear Operators in Hilbert Space; Pitman: Wetherby, UK, 1981. [Google Scholar]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics, Vol. I: Functional Analysis; Academic Press, 1972; Vol. II: Fourier Analysis, Self-Adjointness; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Muga, J.G.; Sala Mayato, R.; Egusquiza, I.L. (Eds.) Time in Quantum Mechanics; Lecture Notes in Physics Monographs; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- de Gosson, M. The Wigner Transform; Advanced Textbooks in Mathematics; World Scientific: Singapore, 2017. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1966. [Google Scholar]
- Debnath, L. On Laguerre transform. Bull. Calcutta Math. Soc. 1960, 52, 69–77. [Google Scholar]
- McCully, J. The Laguerre transform. SIAM Rev. 1960, 2, 185–191. [Google Scholar] [CrossRef]
- Bergeron, H.; Czuchry, E.; Gazeau, J.-P. Deformation of Euclidean geometry through Gabor regularisations of curvilinear coordinates. 2022; in press. [Google Scholar]
- Cohen-Tannoudji, G. Lambda, the Fifth Foundational Constant Considered by Einstein. Metrologia 2018, 55, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tannoudji, G. The de Broglie universal substratum, the Lochak monopoles and the dark universe. Ann. Fond. Louis Broglie 2019, 44, 187–209. [Google Scholar]
- Mohammad-Djafari, A. Entropy, Information Theory, Information Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems. Entropy 2015, 17, 3989–4027. [Google Scholar] [CrossRef]
- Souriau, J.M. Thermodynamique et géométrie. In Differential Geometrical Methods in Mathematical Physics II; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1978; Volume 676, pp. 369–397. [Google Scholar]
- Marle, C.-M. On Gibbs states of mechanical systems with symmetries. J. Geom. Symmetry Phys. 2020, 57, 45–85. [Google Scholar] [CrossRef]
- Marle, C.-M. Examples of Gibbs states of mechanical systems with symmetries. J. Geom. Symmetry Phys. 2020, 58, 55–79. [Google Scholar] [CrossRef]
- Barbaresco, F.; Gay-Balmaz, F. Lie group cohomology and (multi)symplectic integrators: New geometric tools for Lie group machine learning based on Souriau geometric statistical mechanics. Entropy 2020, 22, 498. [Google Scholar] [CrossRef]
- Kuntz, l.; Casadio, R. Singularity avoidance in quantum gravity. Phys. Lett. B 2020, 802, 135219. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Connes, A. Noncommutative geometry and the spectral model of space-time. Séminaire Poincaré 2007, X, 179–202. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen-Tannoudji, G.; Gazeau, J.-P.; Habonimana, C.; Shabani, J. Quantum Models à la Gabor for the Space-Time Metric. Entropy 2022, 24, 835. https://doi.org/10.3390/e24060835
Cohen-Tannoudji G, Gazeau J-P, Habonimana C, Shabani J. Quantum Models à la Gabor for the Space-Time Metric. Entropy. 2022; 24(6):835. https://doi.org/10.3390/e24060835
Chicago/Turabian StyleCohen-Tannoudji, Gilles, Jean-Pierre Gazeau, Célestin Habonimana, and Juma Shabani. 2022. "Quantum Models à la Gabor for the Space-Time Metric" Entropy 24, no. 6: 835. https://doi.org/10.3390/e24060835
APA StyleCohen-Tannoudji, G., Gazeau, J. -P., Habonimana, C., & Shabani, J. (2022). Quantum Models à la Gabor for the Space-Time Metric. Entropy, 24(6), 835. https://doi.org/10.3390/e24060835