Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme
Abstract
:1. Introduction
2. Numerical Methods
2.1. D3Q19 Lattice Model
2.2. Discrete Unified gas Kinetic Scheme
2.3. The Present Slip Boundary Condition
2.4. Relation between the Combination Parameters and Slip Lengths
2.5. Corner Boundary Condition
2.6. Algorithm
- Initialize the density, velocity, and viscosity. Obtain the values of and at time t = 0.
- Compute the distribution functions and using Equations (16) and (18).
- Compute the value of and using Equation (15).
- Compute the distribution function using Equations (14) and (13).
- Get the macro values of density and velocity using Equation (17). Compute the equilibrium distribution function .
- Compute the distribution function using Equation (13). Obtain the flux by Equation (5).
- For the unknown distribution functions at the boundary or corner, the boundary conditions are employed, such as Equations (35) or (73).
- Update the distribution function using Equation (8). Obtain the macro values of density and velocity.
- Repeat steps (2)–(8) until the convergence criterion is satisfied.
3. Numerical Validation
3.1. Comparison with Single-Component Lattice Boltzmann Simulation
3.2. Comparison with Direct Numerical Simulation
4. Application to the Two-Sided Orthogonal Oscillating Micro-Lid-Driven Cavity Flow
4.1. Problem Description
4.2. Convergence Validation Study
4.3. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costantini, R.; Mollicone, J.-P.; Battista, F. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow. Phys. Fluids 2018, 30, 025102. [Google Scholar] [CrossRef]
- Gose, J.W.; Golovin, K.; Boban, M.; Tobelmann, B.; Callison, E.; Barros, E.; Schultz, M.P.; Tuteja, A.; Perlin, M.; Ceccio, S.L. Turbulent Skin Friction Reduction through the Application of Superhydrophobic Coatings to a Towed Submerged SUBOFF Body. J. Ship Res. 2020, 65, 266–274. [Google Scholar] [CrossRef]
- Im, H.J.; Lee, J.H. Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows. Phys. Fluids 2017, 29, 095101. [Google Scholar] [CrossRef]
- Abu Rowin, W.; Hou, J.; Ghaemi, S. Inner and outer layer turbulence over a superhydrophobic surface with low roughness level at low Reynolds number. Phys. Fluids 2017, 29, 095106. [Google Scholar] [CrossRef]
- Naim, M.S.; Baig, M.F. Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations. Phys. Fluids 2019, 31, 095108. [Google Scholar] [CrossRef]
- Fuaad, P.A.; Prakash, K.A. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study. Comput. Fluids 2019, 181, 208–223. [Google Scholar] [CrossRef]
- Patlazhan, S.; Vagner, S. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall. Phys. Rev. E 2017, 96, 013104. [Google Scholar] [CrossRef]
- Chang, J.; Jung, T.; Choi, H.; Kim, J. Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow. J. Fluid Mech. 2019, 874, 797–820. [Google Scholar] [CrossRef]
- Tretheway, D.C.; Meinhart, C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Rothstein, J.P. Slip on Superhydrophobic Surfaces. Annu. Rev. Fluid Mech. 2010, 42, 89–109. [Google Scholar] [CrossRef]
- Zhu, L.; Tretheway, D.; Petzold, L.; Meinhart, C. Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method. J. Comput. Phys. 2005, 202, 181–195. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, S.; Zeng, Z.; Chew, J.W. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method. Phys. Rev. E 2018, 97, 023302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, S.; Zeng, Z.; Chew, J.W. Lattice model effects on the accuracy of the boundary condition implementations for the convection–diffusion lattice Boltzmann method. Comput. Fluids 2018, 176, 153–169. [Google Scholar] [CrossRef]
- Min, T.; Kim, J. Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 2004, 16, L55–L58. [Google Scholar] [CrossRef]
- Min, T.; Kim, J. Effects of hydrophobic surface on stability and transition. Phys. Fluids 2005, 17, 108106. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering. In Advances in Computational Fluid Dynamics; World Scientfic Publishing: Singapore, 2013; Volume 3, ISBN 978-981-4508-29-2. [Google Scholar]
- Succi, S. Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces with Heterogeneous Catalysis. Phys. Rev. Lett. 2002, 89, 064502. [Google Scholar] [CrossRef]
- Ansumali, S.; Karlin, I.V. Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 2002, 66, 026311. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.H.; Tao, W.Q.; He, Y.L. Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys. Fluids 2005, 17, 058101. [Google Scholar] [CrossRef]
- Chai, Z.; Guo, Z.; Zheng, L.; Shi, B. Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel. J. Appl. Phys. 2008, 104, 014902. [Google Scholar] [CrossRef]
- Verhaeghe, F.; Luo, L.; Blanpain, B. Lattice Boltzmann modeling of microchannel flow in slip flow regime. J. Comput. Phys. 2009, 228, 147–157. [Google Scholar] [CrossRef]
- Kuo, L.-S.; Chen, P.-H. A unified approach for nonslip and slip boundary conditions in the lattice Boltzmann method. Comput. Fluids 2009, 38, 883–887. [Google Scholar] [CrossRef]
- Navier, C.L.M.H. Mémoire sur les lois du mouvement des fluides. In Mémoires de ĺAcadémie Royale des Sciences de ĺInstitut de France; Royale des Sciences de l’Institut de France: Paris, France, 1823; Volume 6, pp. 389–416. [Google Scholar]
- Wang, K.; Chai, Z.; Hou, G.; Chen, W.; Xu, S. Slip boundary condition for lattice Boltzmann modeling of liquid flows. Comput. Fluids 2018, 161, 60–73. [Google Scholar] [CrossRef]
- Yang, L.; Yu, Y.; Hou, G.; Wang, K.; Xiong, Y. Boundary conditions with adjustable slip length for the lattice Boltzmann simulation of liquid flow. Comput. Fluids 2018, 174, 200. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yu, Y.; Pei, H.; Gao, Y.; Hou, G. Lattice Boltzmann simulations of liquid flows in microchannel with an improved slip boundary condition. Chem. Eng. Sci. 2019, 202, 105–117. [Google Scholar] [CrossRef]
- Wu, D.; Wang, J.-N.; Wu, S.-Z.; Chen, Q.-D.; Zhao, S.; Zhang, H.; Sun, H.-B.; Jiang, L. Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. Adv. Funct. Mater. 2011, 21, 2927–2932. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
- Zhu, D.; Li, X.; Zhang, G.; Zhang, X.; Zhang, X.; Wang, T.; Yang, B. Mimicking the Rice Leaf—From Ordered Binary Structures to Anisotropic Wettability. Langmuir 2010, 26, 14276–14283. [Google Scholar] [CrossRef]
- Long, J.; Fan, P.; Jiang, D.; Han, J.; Lin, Y.; Cai, M.; Zhang, H.; Zhong, M. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures. Adv. Mater. Interfaces 2016, 3, 1600641. [Google Scholar] [CrossRef]
- Rastegari, A.; Akhavan, R. On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 2015, 773, R4. [Google Scholar] [CrossRef]
- Seo, J.; Mani, A. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces. Phys. Rev. Fluids 2018, 3, 044601. [Google Scholar] [CrossRef]
- Rajappan, A.; Golovin, K.; Tobelmann, B.; Pillutla, V.; Abhijeet; Tuteja, A.; McKinley, G.H. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Phys. Fluids 2019, 31, 042107. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.S.; Gad-el-Hak, M. Slippery surfaces: A decade of progress editors-pick. Phys. Fluids 2021, 33, 071301. [Google Scholar]
- Abu Rowin, W.; Ghaemi, S. Streamwise and spanwise slip over a superhydrophobic surface. J. Fluid Mech. 2019, 870, 1127–1157. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, K.; Wang, R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case. Phys. Rev. E 2013, 88, 033305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, Y.; Wang, P.; Guo, Z.; Wang, L.-P. DUGKS simulations of three-dimensional Taylor–Green vortex flow and turbulent channel flow. Comput. Fluids 2017, 155, 9–21. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, S.; Guo, Z. dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation. Comput. Phys. Commun. 2017, 213, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ho, M.T.; Wu, L.; Guo, Z.; Zhang, Y. A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput. Fluids 2018, 161, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, K.; Guo, Z. A discrete unified gas-kinetic scheme for immiscible two-phase flows. Int. J. Heat Mass Transf. 2018, 126, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhong, C.; Zhuo, C. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Phys. Rev. E 2019, 99, 043302. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhu, L.; Guo, Z.; Xu, K. A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows. Commun. Comput. Phys. 2015, 17, 657–681. [Google Scholar] [CrossRef] [Green Version]
- Boutra, A.; Ragui, K.; Benkahla, Y.K. Numerical study of mixed convection heat transfer in a lid-driven cavity filled with a nanofluid. Mech. Ind. 2015, 16, 505. [Google Scholar] [CrossRef]
- Boutra, A.; Ragui, K.; Benkahla, Y.K.; Labsi, N. Mixed Convection of a Bingham Fluid in Differentially Heated Square Enclosure with Partitions. Theor. Found. Chem. Eng. J. 2018, 52, 286–294. [Google Scholar] [CrossRef]
- Gibanov, N.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 2017, 114, 1086–1097. [Google Scholar] [CrossRef]
- Gangawane, K.M.; Oztop, H.F.; Ali, M.E. Mixed convection in a lid-driven cavity containing triangular block with constant heat flux: Effect of location of block. Int. J. Mech. Sci. 2019, 152, 492–511. [Google Scholar] [CrossRef]
- Azizul, F.M.; Alsabery, A.I.; Hashim, I.; Chamkha, A.J. Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept. Appl. Math. Comput. 2020, 33, 125754. [Google Scholar] [CrossRef]
- Tissot, G.; Billard, R.; Gabard, G. Optimal cavity shape design for acoustic liners using Helmholtz equation with visco-thermal losses. J. Comput. Phys. 2019, 402, 109048. [Google Scholar] [CrossRef] [Green Version]
- Sheikholeslami, M.; Vajravelu, K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 2016, 298, 272–282. [Google Scholar] [CrossRef]
- Shankar, P.N.; Deshpande, M.D. Fluid Mechanics in the Driven Cavity. Annu. Rev. Fluid Mech. 2000, 32, 93–136. [Google Scholar] [CrossRef] [Green Version]
- Hammami, F.; Ben-Cheikh, N.; Ben-Beya, B.; Souayeh, B. Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 943–962. [Google Scholar] [CrossRef]
- Souayeh, B.; Hammami, F.; Hdhiri, N.; Alfannakh, H. Unsteady state fluid structure of two-sided nonfacing lid-driven cavity induced by a semicircle at different radii sizes and velocity ratios. Int. J. Mod. Phys. C 2019, 30, 1950060. [Google Scholar] [CrossRef]
- Romano, F.; Kannan, P.K.; Kuhlmann, H.C. Finite-size Lagrangian coherent stuctures in a two-sided lid-driven cavity. Phys. Rev. Fluids 2019, 4, 024302. [Google Scholar] [CrossRef]
- Perumal, D.A. Lattice Boltzmann computation of multiple solutions in a double-sided square and rectangular cavity flows. Therm. Sci. Eng. Prog. 2018, 6, 48–56. [Google Scholar] [CrossRef]
- Tang, L.Q.; Tsang, T.T.H. transient solutions by a least-squares finite-element method and jacobi conjugate gradient technique. Numer. Heat Transfer Part B Fundam. 1995, 28, 183–198. [Google Scholar] [CrossRef]
- Chew, Y.T.; Shu, C.; Niu, X.D. Simulation of unsteady incompressible flows by using taylor series expansion- and least square-based lattice boltzmann method. Int. J. Mod. Phys. C 2002, 13, 719–738. [Google Scholar] [CrossRef]
- Amani, A.; Balcázar, N.; Naseri, A.; Rigola, J. A numerical approach for non-Newtonian two-phase flows using a conservative level-set method. Chem. Eng. J. 2019, 385, 123896. [Google Scholar] [CrossRef]
- Blackburn, H.M.; Lopez, J.M. The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 2003, 497, 289–317. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.D.; Galaktionov, O.S.; Peters, G.W.M.; van de Vosse, F.N.; Meijer, H.E.H. Analysis of mixing in three-dimensional time-periodic cavity flows. J. Fluid Mech. 1999, 386, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Wang, D.; Li, Z.; Gao, Z.; Derksen, J. Mixing process of two miscible fluids in a lid-driven cavity. Chem. Eng. J. 2019, 362, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Su, W.; Zhang, Y. Oscillatory rarefied gas flow inside a three dimensional rectangular cavity. Phys. Fluids 2018, 30, 102002. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhu, L.; Su, W.; Wu, L.; Zhang, Y. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity. Phys. Rev. E 2018, 97, 043103. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Su, W.; Zhu, L.; Zhang, Y. Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular regimes. Int. J. Heat Mass Transfer. 2019, 131, 291–300. [Google Scholar] [CrossRef]
- Bhopalam, S.R.; Perumal, D.A.; Yadav, A.K. Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities. Int. J. Mech. Sci. 2021, 196, 106303. [Google Scholar] [CrossRef]
- Peng, Y.; Shu, C.; Chew, Y. A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. J. Comput. Phys. 2004, 193, 260–274. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Xu, K.; Huang, J.C. A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows. J. Comput. Phys. 2010, 229, 7747–7764. [Google Scholar] [CrossRef]
- Schäffel, D.; Koynov, K.; Vollmer, D.; Butt, H.-J.; Schönecker, C. Local Flow Field and Slip Length of Superhydrophobic Surfaces. Phys. Rev. Lett. 2016, 116, 134501. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Shi, B.; Zhao, T.S.; Zheng, C. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E 2007, 76, 056704. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 2002, 65, 046308. [Google Scholar] [CrossRef]
- Junk, M.; Yang, Z. One-point boundary condition for the lattice Boltzmann method. Phys. Rev. E 2005, 72, 066701. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Hou, G.; Yu, Y. A new corner boundary condition for the discrete unified gas kinetic scheme. Int. J. Numer. Methods Fluids 2020, 93, 1520–1539. [Google Scholar] [CrossRef]
- Krastins, I.; Kao, A.; Pericleous, K.; Reis, T. Moment-based boundary conditions for straight on-grid boundaries in three-dimensional lattice Boltzmann simulations. Int. J. Numer. Methods Fluids 2020, 92, 1948–1974. [Google Scholar] [CrossRef]
- White, F. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974; p. 123. [Google Scholar]
- Busse, A.; Sandham, N. Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 2012, 24, 055111. [Google Scholar] [CrossRef] [Green Version]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
Number | |||
---|---|---|---|
(0,0,0)c | 1 | 0 | 1/3 |
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c | 6 | 1 | 1/18 |
(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c | 12 | 1/36 |
t | a | b | c | d | e | f | g | h | i | j | k | l | m | n | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | |||||||||||||||
T | 11.3139 | 11.3139 | 11.4836 | 11.3139 | 11.4836 | 11.3139 | 11.3988 | 11.3139 | 11.4836 | 11.3139 | 11.6533 | 11.3139 | 11.4836 | 11.3139 | |
0.25 T | 1.08977 | 1.20004 | 1.0898 | 1.09042 | 1.20004 | 1.20603 | 1.20004 | 1.20154 | 1.07988 | 1.08963 | 1.20004 | 1.22381 | 2.40009 | 2.40309 | |
0.5 T | 11.3139 | 11.3139 | 11.1442 | 11.3139 | 11.1442 | 11.3139 | 11.2291 | 11.3139 | 11.1442 | 11.3139 | 10.9745 | 11.3139 | 11.1442 | 11.3139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Hou, G. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme. Entropy 2022, 24, 907. https://doi.org/10.3390/e24070907
Guo W, Hou G. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme. Entropy. 2022; 24(7):907. https://doi.org/10.3390/e24070907
Chicago/Turabian StyleGuo, Wenqiang, and Guoxiang Hou. 2022. "Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme" Entropy 24, no. 7: 907. https://doi.org/10.3390/e24070907
APA StyleGuo, W., & Hou, G. (2022). Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme. Entropy, 24(7), 907. https://doi.org/10.3390/e24070907