Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics
Funding
Acknowledgments
Conflicts of Interest
References
- Gleick, J. The Information: A History, A Theory, A Flood; Vintage: New York, NY, USA, 2011. [Google Scholar]
- Kreer, J. A question of terminology. IRE Trans. Inf. Theory 1957, 3, 208. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Geoghegan, B.D. Historiographic conceptualization of information: A critical survey. IEEE Ann. Hist. Comput. 2008, 30, 66–81. [Google Scholar] [CrossRef]
- Guizzo, E.M. The Essential Message: Claude Shannon and the Making of Information Theory. Ph.D. Thesis, Massachusetts Institute of Technology, Singapore, 2003. [Google Scholar]
- Verdu, S. Fifty years of Shannon theory. IEEE Trans. Inf. Theory 1998, 44, 2057–2078. [Google Scholar] [CrossRef] [Green Version]
- Calderbank, A.R. The art of signaling: Fifty years of coding theory. IEEE Trans. Inf. Theory 1998, 44, 2561–2595. [Google Scholar] [CrossRef]
- Gauthier, J.; Vincent, A.T.; Charette, S.J.; Derome, N. A brief history of bioinformatics. Brief. Bioinform. 2019, 20, 1981–1996. [Google Scholar] [CrossRef] [PubMed]
- Nirenberg, M.; Leder, P.; Bernfield, M.; Brimacombe, R.; Trupin, J.; Rottman, F.; O’Neal, C. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc. Natl. Acad. Sci. USA 1965, 53, 1161. [Google Scholar] [CrossRef] [Green Version]
- Margoliash, E. Primary structure and evolution of cytochrome C. Proc. Natl. Acad. Sci. USA 1963, 50, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, C.; Margoliash, E. Comparative aspects of primary structures of proteins. Annu. Rev. Biochem. 1968, 37, 727–791. [Google Scholar] [CrossRef]
- Crick, F.H. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Woese, C.R. On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 1965, 54, 1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerkandl, E.; Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 1965, 8, 357–366. [Google Scholar] [CrossRef]
- Crick, F.H.C. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Ouzounis, C.A.; Valencia, A. Early bioinformatics: The birth of a discipline—A personal view. Bioinformatics 2003, 19, 2176–2190. [Google Scholar] [CrossRef] [Green Version]
- Fitch, W.M.; Margoliash, E. Usefulness of amino acid and nucleotide sequences in evolutionary studies. Evol. Biol. 1970, 4, 67–109. [Google Scholar]
- Krzywicki, A.; Slonimski, P.P. Formal analysis of protein sequences: I. Specific long-range constraints in pair associations of amino acids. J. Theor. Biol. 1967, 17, 136–158. [Google Scholar] [CrossRef]
- Gibbs, A.J.; McIntyre, G.A. The diagram, a method for comparing sequences: Its use with amino acid and nucleotide sequences. Eur. J. Biochem. 1970, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef]
- Diniz, W.D.S.; Canduri, F. Bioinformatics: An overview and its applications. Gen. Mol. Res. 2017, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.; Pan, Z.; Yin, K.; Khateeb, A. Recent advances of deep learning in bioinformatics and computational biology. Front. Genet. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwary, B.K. Introduction to Bioinformatics and Computational Biology. In Bioinformatics and Computational Biology; Springer: Singapore, 2022; pp. 1–9. [Google Scholar]
- Gatlin, L.L. The information content of DNA. J. Theor. Biol. 1966, 10, 281–300. [Google Scholar] [CrossRef]
- Schneider, T.D. A brief review of molecular information theory. Nano Commun. Netw. 2010, 1, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavian, Z.; Kavousi, K.; Masoudi-Nejad, A. Information theory in systems biology. Part I: Gene Regulatory and Metabolic Networks. Semin. Cell Dev. Biol. 2016, 51, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Mousavian, Z.; Díaz, J.; Masoudi-Nejad, A. Information Theory in Systems Biology. Part II: Protein–Protein Interaction and Signaling Networks. Semin. Cell Dev. Biol. 2016, 51, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Vinga, S. Information theory applications for biological sequence analysis. Brief. Bioinform. 2014, 15, 376–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, D.Y.J. Application of Information Theory to Modeling Exploration and Detecting Protein Coevolution. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2013. [Google Scholar]
- Simonetti, F.L.; Teppa, E.; Chernomoretz, A.; Nielsen, M.; Marino Buslje, C. MISTIC: Mutual information server to infer coevolution. Nucleic Acids Res. 2013, 41, W8–W14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, A.; Dib, L. Co-evolution and information signals in biological sequences. Theor. Comput. Sci. 2011, 412, 2486–2495. [Google Scholar] [CrossRef]
- Dunn, S.D.; Wahl, L.M.; Gloor, G.B. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 2008, 24, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloor, G.B.; Martin, L.C.; Wahl, L.M.; Dunn, S.D. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 2005, 44, 7156–7165. [Google Scholar] [CrossRef]
- Martin, L.C.; Gloor, G.B.; Dunn, S.D.; Wahl, L.M. Using information theory to search for co-evolving residues in proteins. Bioinformatics 2005, 21, 4116–4124. [Google Scholar] [CrossRef] [Green Version]
- Uda, S. Application of information theory in systems biology. Biophys. Rev. 2020, 12, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltermann, C.; Klipp, E. Information theory based approaches to cellular signaling. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2011, 1810, 924–932. [Google Scholar] [CrossRef]
- Chanda, P.; Costa, E.; Hu, J.; Sukumar, S.; Van Hemert, J.; Walia, R. Information theory in computational biology: Where we stand today. Entropy 2020, 22, 627. [Google Scholar] [CrossRef]
- Pearson, K. Principal components analysis. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 6, 559. [Google Scholar] [CrossRef] [Green Version]
- Comon, P. Independent component analysis, a new concept? Signal Processing 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Ishaq, N.; Student, G.; Daniels, N.M. Clustered hierarchical entropy-scaling search of astronomical and biological data. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 780–789. [Google Scholar]
- Yu, Y.W.; Daniels, N.M.; Danko, D.C.; Berger, B. Entropy-scaling search of massive biological data. Cell Syst. 2015, 1, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.E.; Stumpf, M.P.; Babtie, A.C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017, 5, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, M.P. Inferring better gene regulation networks from single-cell data. Curr. Opin. Syst. Biol. 2021, 27, 100342. [Google Scholar] [CrossRef]
- Gandrillon, O.; Gaillard, M.; Espinasse, T.; Garnier, N.B.; Dussiau, C.; Kosmider, O.; Sujobert, P. Entropy as a measure of variability and stemness in single-cell transcriptomics. Curr. Opin. Syst. Biol. 2021, 27, 100348. [Google Scholar] [CrossRef]
- Lovino, M.; Randazzo, V.; Ciravegna, G.; Barbiero, P.; Ficarra, E.; Cirrincione, G. A survey on data integration for multi-omics sample clustering. Neurocomputing 2022, 488, 494–508. [Google Scholar] [CrossRef]
- Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the integration of multi-omics data: Mathematical aspects. BMC Bioinform. 2016, 17, S15. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.D.F.; Rodrigues, F.A.; Cristino, A.S. Complex networks: The key to systems biology. Genet. Mol. Biol. 2008, 31, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.M.; Cesar, R.M., Jr.; Costa, L.D.F. Gene expression complex networks: Synthesis, identification, and analysis. J. Comput. Biol. 2011, 18, 1353–1367. [Google Scholar] [CrossRef]
- Yockey, H.P. Information theory, evolution and the origin of life. Inf. Sci. 2002, 141, 219–225. [Google Scholar] [CrossRef]
- Ball, K.R.; Grant, C.; Mundy, W.R.; Shafer, T.J. A multivariate extension of mutual information for growing neural networks. Neural Netw. 2017, 95, 29–43. [Google Scholar] [CrossRef]
- Coolen, A.C.; Kühn, R.; Sollich, P. Theory of Neural Information Processing Systems; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG features in cross-subject emotion recognition. Front. Neurosci. 2018, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, I.B. Quantum Information Theory and Quantum Mechanics-Based Biological Modeling and Biological Channel Capacity Calculation. In Quantum Biological Information Theory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 143–195. [Google Scholar]
- Djordjevic, I.B. Quantum-Mechanical Modeling of Mutations, Aging, Evolution, Tumor, and Cancer Development. In Quantum Biological Information Theory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 197–236. [Google Scholar]
- Djordjevic, I.B. Classical and quantum error-correction coding in genetics. In Quantum Biological Information Theory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 237–269. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartal, A.; Jagodnik, K.M. Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics. Entropy 2022, 24, 925. https://doi.org/10.3390/e24070925
Bartal A, Jagodnik KM. Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics. Entropy. 2022; 24(7):925. https://doi.org/10.3390/e24070925
Chicago/Turabian StyleBartal, Alon, and Kathleen M. Jagodnik. 2022. "Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics" Entropy 24, no. 7: 925. https://doi.org/10.3390/e24070925
APA StyleBartal, A., & Jagodnik, K. M. (2022). Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics. Entropy, 24(7), 925. https://doi.org/10.3390/e24070925