Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer’s Disease Patients with Different Degrees of Dementia
Abstract
:1. Introduction
2. Methods
2.1. Patient Preparation
2.2. EEG Signal Preprocessing
2.2.1. Filtering the Data
2.2.2. Independent Component Analysis
2.2.3. Nonlinear Dynamics: PmEn, SampEn, LZC
2.3. Statistical Analysis
3. Results
3.1. Temporal Aspect Analysis
3.1.1. Temporal Aspect Whole Brain Area Analysis
- Mild-to-moderate patients showed higher entropy values during music stimulus compared to pre-stimulus (p < 0.0001) and higher entropy values at post-stimulus compared to pre-stimulus (p = 0.003164). Previous studies have shown that entropy values and complexity are both higher in people with normal cognitive abilities compared to those with Alzheimer’s disease. Therefore, the higher entropy during music stimulus compared to pre-stimulation in mild to moderate patients may reflect increased EEG activity and an improvement in cognitive level.
- The entropy of severe patients showed lower values during stimulation compared to pre-stimulation (p < 0.0001), and lower entropy values post-stimulation compared to pre-stimulation (p < 0.0001). Related studies have shown that insomnia symptoms accompanied by anxiety have reduced EEG nonlinear characteristics when relieved [13], which may indicate a reduction in brain activity as well as relief from anxiety. Therefore, the decrease in entropy during music stimulation in severe patients compared to pre-stimulation may reflect the relief of anxiety.
- The entropy values in the control group showed a similar trend as in the mild-to moderate group, with significantly higher entropy values during stimulus than pre-stimulation (p=0.00603) and significantly higher entropy values post-stimulation compared to pre-stimulation (p = 0.005995). Thus, cognitive-related brain responses may have been present in the control group under music stimulation as well.
3.1.2. Temporal Aspect Sub-Brain Area Analysis
3.2. Spatial Aspect Analysis
3.2.1. Spatial Aspect Analysis Pre-Stimulus
3.2.2. Spatial Aspect Analysis During-Stimulus
3.2.3. Spatial Aspect Analysis Post-Stimulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The Worldwide Costs of Dementia 2015 and Comparisons with 2010. Alzheimers Dement. 2017, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nowrangi, M.A.; Lyketsos, C.G.; Rosenberg, P.B. Principles and Management of Neuropsychiatric Symptoms in Alzheimer’s Dementia. Alzheimers Res. Ther. 2015, 7, 12. [Google Scholar] [CrossRef]
- Canu, E.; Sarasso, E.; Filippi, M.; Agosta, F. Effects of Pharmacological and Nonpharmacological Treatments On Brain Functional Magnetic Resonance Imaging in Alzheimer’s Disease and Mild Cognitive Impairment: A Critical Review. Alzheimers Res. Ther. 2018, 10, 21. [Google Scholar] [CrossRef]
- Atiwannapat, P.; Thaipisuttikul, P.; Poopityastaporn, P.; Katekaew, W. Active Versus Receptive Group Music Therapy for Major Depressive Disorder—A Pilot Study. Complement. Ther. Med. 2016, 26, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Lyketsos, C.G.; Olin, J. Depression in Alzheimer’s Disease: Overview and Treatment. Biol. Psychiat. 2002, 52, 243–252. [Google Scholar] [CrossRef]
- Gold, C.; Solli, H.P.; Krüger, V.; Lie, S.A. Dose–Response Relationship in Music Therapy for People with Serious Mental Disorders: Systematic Review and Meta-Analysis. Clin. Psychol. Rev. 2009, 29, 193–207. [Google Scholar] [CrossRef]
- Bruer, R.A.; Spitznagel, E.; Cloninger, C.R. The Temporal Limits of Cognitive Change From Music Therapy in Elderly Persons with Dementia Or Dementia-Like Cognitive Nmpairment: A Randomized Controlled Trial. J. Music Ther. 2007, 44, 308–328. [Google Scholar] [CrossRef]
- Clément, S.; Tonini, A.; Khatir, F.; Schiaratura, L.; Samson, S. Short and Longer Term Effects of Musical Intervention in Severe Alzheimer’s Disease. Music Percept. Interdiscip. J. 2012, 29, 533–541. [Google Scholar] [CrossRef]
- Byrns, A.; Abdessalem, H.B.; Cuesta, M.; Bruneau, M.; Belleville, S.; Frasson, C. Eeg Analysis of the Contribution of Music Therapy and Virtual Reality to the Improvement of Cognition in Alzheimer’s Disease. J. Biomed. Sci. Eng. 2020, 13, 187–201. [Google Scholar] [CrossRef]
- Johnson, J.; Cotman, C.; Tasaki, C.; Shaw, G. Enhancement of Spatial-Temporal Reasoning After a Mozart Listening Condition in Alzheimer’s Disease: A Case Study. Neurol. Res. 1998, 20, 666–672. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.; Yang, Y.; Chou, M.; Chen, C.; Lai, C. Adjunct Effect of Music Therapy On Cognition in Alzheimer’s Disease in Taiwan: A Pilot Study. Neuropsychiatr. Dis. Treat. 2015, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Svansdottir, H.B.; Snædal, J. Music Therapy in Moderate and Severe Dementia of Alzheimer’s Type: A Case—Control Study. Int. Psychogeriatr. 2006, 18, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, X.; Yang, Y.; Dong, T.; Lei, L.; Cheng, Q.; Li, S. Spatio-Temporal Dynamics of Eeg Features During Sleep in Major Depressive Disorder After Treatment with Escitalopram: A Pilot Study. BMC Psychiatry 2020, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Chung, Y.G.; Kim, S. An Efficient Detection of Epileptic Seizure by Differentiation and Spectral Analysis of Electroencephalograms. Comput. Biol. Med. 2015, 66, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J. Nonlinear Dynamical Analysis of Eeg and Meg: Review of an Emerging Field. Clin. Neurophysiol. 2005, 116, 2266–2301. [Google Scholar] [CrossRef]
- Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for Nonlinearity in Time Series: The Method of Surrogate Data. Phys. D Nonlinear Phenom. 1992, 58, 77–94. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Albert, M.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carillo, M.; Thies, W.; Phelps, C.H. Introduction to Revised Criteria for the Diagnosis of Alzheimer’s Disease: National Institute On Aging and the Alzheimer Association Workgroups. Alzheimers Dement. J. Alzheimers Assoc. 2011, 7, 257. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. Eeglab: An Open Source Toolbox for Analysis of Single-Trial Eeg Dynamics Including Independent Component Analysis. J. Neurosci. Meth. 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Flexer, A.; Bauer, H.; Pripfl, J.; Dorffner, G. Using Ica for Removal of Ocular Artifacts in Eeg Recorded From Blind Subjects. Neural Netw. 2005, 18, 998–1005. [Google Scholar] [CrossRef]
- Comon, P.; Jutten, C. Handbook of Blind Source Separation: Independent Component Analysis and Applications; Academic Press: Cambridge, MA, USA, 2010; pp. 1–12. [Google Scholar]
- Vigário, R.; Sarela, J.; Jousmiki, V.; Hamalainen, M.; Oja, E. Independent Component Approach to the Analysis of Eeg and Meg Recordings. IEEE Trans. Bio. Med. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef]
- Huang, C.; Wahlund, L.; Dierks, T.; Julin, P.; Winblad, B.; Jelic, V. Discrimination of Alzheimer’s Disease and Mild Cognitive Impairment by Equivalent Eeg Sources: A Cross-Sectional and Longitudinal Study. Clin. Neurophysiol. 2000, 111, 1961–1967. [Google Scholar] [CrossRef]
- Shayegh, F.; Sadri, S.; Amirfattahi, R.; Ansari-Asl, K. A Model-Based Method for Computation of Correlation Dimension, Lyapunov Exponents and Synchronization from Depth-Eeg Signals. Comput. Meth. Prog. Biomed. 2014, 113, 323–337. [Google Scholar] [CrossRef]
- Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of Eeg Background Activity in Alzheimer’s Disease Patients with Lempel–Ziv Complexity and Central Tendency Measure. Med. Eng. Phys. 2006, 28, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, R.; Chen, Z.; Chang, X.; Chen, J.; Xie, L. Application of Approximate Entropy On Dynamic Characteristics of Epileptic Absence Seizure. Neural Regen. Res. 2012, 7, 572. [Google Scholar] [PubMed]
- Li, J.; Shen, J.; Liu, S.; Chauvel, M.; Yang, W.; Mei, J.; Lei, L.; Wu, L.; Gao, J.; Yang, Y. Responses of Patients with Disorders of Consciousness to Habit Stimulation: A Quantitative Eeg Study. Neurosci. Bull. 2018, 34, 691–699. [Google Scholar] [CrossRef]
- Amigó, J.M.; Kennel, M.B. Topological Permutation Entropy. Phys. D Nonlinear Phenom. 2007, 231, 137–142. [Google Scholar] [CrossRef]
- Buzsaki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, W.; Liu, K.; Zhao, W.; Wu, L.; Lei, L.; Dong, T.; Hou, N.; Yang, F.; Qu, Y. Increased Sample Entropy in Eegs During the Functional Rehabilitation of an Injured Brain. Entropy 2019, 21, 698. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Similarity Analysis of Dna Sequences Based On the Generalized Lz Complexity of (0, 1)-Sequences. J. Math. Chem. 2008, 43, 26–31. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Li, Y.; Hu, X.; Lu, J.; Chan, P.; Yan, T.; Han, Y. Frequency-Dependent Changes in Fractional Amplitude of Low-Frequency Oscillations in Alzheimer’s Disease: A Resting-State Fmri Study. Brain Imaging Behav. 2019, 14, 2187–2201. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X.; Li, J.; Wei, F.; Hou, H.; Chen, X.; Li, X.; Chen, W. Fractional Amplitude of Low-Frequency Fluctuations is Disrupted in Alzheimer’s Disease with Depression. Clin. Neurophysiol. 2017, 128, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Koch, C. The Quest for Consciousness a Neurobiological Approach; Roberts & Co.: Sydney, NSW, Australia, 2004; Volume 162, p. 407. [Google Scholar]
- Sluimer, J.D.; Karas, G.B.; Vrenken, H.; van Schijndel, R.A.; van der Flier, W.M.; Goekoop, R.; Rombouts, S.A.; Scheltens, P.; Barkhof, F. Ic–P–053: Relevance of Temporo—Parietal Atrophy in Mci Conversion to Alzheimer’s Disease: A Voxel—Based Morphometry Study. Alzheimers Dement. 2006, 2, S675. [Google Scholar] [CrossRef]
- Cho, S.; Minn, Y.; Kwon, K. Lateral Temporal Atrophy in Mild Cognitive Impairment. Alzheimers Dement. 2010, 6, 3. [Google Scholar] [CrossRef]
- Koelsch, S. Toward a Neural Basis of Music Perception—A Review and Updated Model. Front. Psychol. 2011, 2, 110. [Google Scholar] [CrossRef]
- Lai, H.; Xu, M.; Sony, Y.; Liu, J. The Neural Mechanism Underlying Music Perception: A Meta-Analysis of Fmri Studies. Acta Psychol. Sin. 2013, 45, 491. [Google Scholar] [CrossRef]
Group | Number | MMSE | BPSD | Average Age | Sex | |
---|---|---|---|---|---|---|
Male | Female | |||||
Mild-to-moderate | 17 | 17.5 ± 4.5 | 15.9 ± 9.0 | 80.2 ± 5.4 | 8 | 9 |
Severe | 16 | 6.3 ± 4.3 | 18.3 ± 7.8 | 82 ± 4.3 | 8 | 8 |
Control | 16 | 24.7 ± 2.2 | 81 ± 2.8 | 8 | 8 |
During Stimulus | Post Stimulus | ||
---|---|---|---|
Mild-to-Moderate | Severe | Mild-to-Moderate | Severe |
1.0401 ± 0.01822 | 0.9376 ± 0.03054 | 1.1.099 ± 0.4139 | 0.9628 ± 0.00859 |
p = 0.0017 | p = 0.0090 |
PmEn | Frontal Lobe | Temporal Lobe | Parietal Lobe | |||
---|---|---|---|---|---|---|
During Stimulus | Post- Stimulus | During Stimulus | Post- Stimulus | During Stimulus | Post- Stimulus | |
Mild-to-moderate | ↓ | ↓ | ↑ | ↑ | ||
Severe | ↓ | ↓ | ||||
Controls | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ |
SampEn | Frontal Lobe | Temporal Lobe | Parietal Lobe | |||
---|---|---|---|---|---|---|
During Stimulus | Post- Stimulus | During Stimulus | Post- Stimulus | During Stimulus | Post- Stimulus | |
Mild-to-moderate | ↓ | ↓ | ↑ | ↑ | ||
Severe | ↓ | ↓ | ||||
Controls | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ |
LZC | Frontal Lobe | Temporal Lobe | Parietal Lobe | |||
---|---|---|---|---|---|---|
During Stimulus | Post- Stimulus | During Stimulus | Post Stimulus | During Stimulus | Post Stimulus | |
Mild-to-moderate | ↓ | ↓ | ↑ | ↑ | ||
Severe | ↓ | ↓ | ||||
Controls | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ |
PmEn | Frontal Lobe | Temporal Lobe | Parietal Lobe |
---|---|---|---|
Mild-to-moderate | 0.4249 ± 0.00593 | 0.4460 ± 0.00933 | 0.4212 ± 0.00657 |
Severe | 0.4142 ± 0.00705 | 0.4183 ± 0.01419 | 0.4029 ± 0.00591 |
Controls | 0.4403 ± 0.00435 | 0.4469 ± 0.00600 | 0.4335 ± 0.00553 |
SampEn | Frontal Lobe | Temporal Lobe | Parietal Lobe |
---|---|---|---|
Mild-to-moderate | 0.4083 ± 0.00423 | 0.4122 ± 0.00269 | 0.4132 ± 0.00476 |
Severe | 0.3904 ± 0.00724 | 0.4036 ± 0.00276 | 0.4025 ± 0.00356 |
Controls | 0.4257 ± 0.00327 | 0.4265 ± 0.00400 | 0.4222 ± 0.00332 |
LZC | Frontal Lobe | Temporal Lobe | Parietal Lobe |
---|---|---|---|
Mild-to-moderate | 0.2949 ± 0.00256 | 0.3132 ± 0.00369 | 0.3035 ± 0.00278 |
Severe | 0.2676 ± 0.00502 | 0.2763 ± 0.02311 | 0.2656 ± 0.00271 |
Controls | 0.3403 ± 0.00267 | 0.3459 ± 0.00340 | 0.3435 ± 0.00412 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Sun, F.; Guo, Y.; Zhai, M.; Yu, S.; Chu, J.; Yu, C.; Yang, Y. Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer’s Disease Patients with Different Degrees of Dementia. Entropy 2022, 24, 1137. https://doi.org/10.3390/e24081137
Wu T, Sun F, Guo Y, Zhai M, Yu S, Chu J, Yu C, Yang Y. Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer’s Disease Patients with Different Degrees of Dementia. Entropy. 2022; 24(8):1137. https://doi.org/10.3390/e24081137
Chicago/Turabian StyleWu, Tingting, Fangfang Sun, Yiwei Guo, Mingwei Zhai, Shanen Yu, Jiantao Chu, Chenhao Yu, and Yong Yang. 2022. "Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer’s Disease Patients with Different Degrees of Dementia" Entropy 24, no. 8: 1137. https://doi.org/10.3390/e24081137
APA StyleWu, T., Sun, F., Guo, Y., Zhai, M., Yu, S., Chu, J., Yu, C., & Yang, Y. (2022). Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer’s Disease Patients with Different Degrees of Dementia. Entropy, 24(8), 1137. https://doi.org/10.3390/e24081137