Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation
Abstract
:1. Introduction
- We design a signal frame to adjust the pilot and data signals transmission process, which contributes to utilizing channel correlation between non-reconciled key generation and secure transmission.
- Based on the channel correlation, the non-reconciled keys generated from the wireless channel are used to encrypt transmitted data. Before encryption, we propose an adaptive coding algorithm based on the equivalent channel to encode data bits according to different signal-to-noise ratios (SNRs).
- Theoretical analysis and simulation results demonstrate that compared with the NRK-SC scheme, the proposed scheme has significant effects in reducing BER and improving the secure transmission rate.
2. System Model and Problem Statement
2.1. System Model
2.2. Problem Statement
3. The Proposed Non-Reconciled Keys-Assisted Secure Communication Scheme Based on Channel Correlation
3.1. Signal Frame Design
3.2. Non-Reconciled Physical-Layer Key Generation
3.3. Secure Transmission Based on Adaptive Coding
Algorithm 1 Adaptive coding algorithm based on the equivalent channel |
|
3.3.1. Adaptive Coding Based on the Equivalent Channel
3.3.2. Secure Transmission
4. Performance Evaluation
4.1. Security Analysis
4.2. Reliability Analysis
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koivisto, M.; Talvitie, J.; Rastorgueva-Foi, E.; Lu, Y.; Valkama, M. Channel Parameter Estimation and TX Positioning with Multi-Beam Fusion in 5G mmWave Networks. IEEE Trans. Wirel. Commun. 2022, 21, 3192–3207. [Google Scholar] [CrossRef]
- Alobaidy, H.A.H.; Jit Singh, M.; Behjati, M.; Nordin, R.; Abdullah, N.F. Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies: Applications and Challenges. IEEE Access 2022, 10, 24095–24131. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Z.; Chen, S. Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G. IET Commun. 2020, 14, 3303–3311. [Google Scholar] [CrossRef]
- Jin, L.; Hu, X.; Lou, Y.; Zhong, Z.; Sun, X.; Wang, H.; Wu, J. Introduction to wireless endogenous security and safety: Problems, attributes, structures and functions. China Commun. 2021, 18, 88–99. [Google Scholar] [CrossRef]
- Wang, X.; Jin, L.; Lou, Y.; Xu, X. Analysis and application of endogenous wireless security principle for key generation. China Commun. 2021, 18, 99–114. [Google Scholar] [CrossRef]
- Cheng, C.; Lu, R.; Petzoldt, A.; Takagi, T. Securing the Internet of Things in a Quantum World. IEEE Commun. Mag. 2017, 55, 116–120. [Google Scholar] [CrossRef]
- Huang, X.; Ansari, N.; Huang, S.; Li, W. Dynamic Bayesian Network Based Security Analysis for Physical Layer Key Extraction. IEEE Open J. Commun. Soc. 2022, 3, 379–390. [Google Scholar] [CrossRef]
- Tang, J.; Wen, H.; Song, H.-H.; Jiao, L.; Zeng, K. Sharing Secrets via Wireless Broadcasting: A New Efficient Physical Layer Group Secret Key Generation for Multiple IoT Devices. IEEE Internet Things J. 2022, 9, 15228–15239. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Huang, X.; Xiang, Y.; Su, C. A Physical-Layer Key Generation Approach Based on Received Signal Strength in Smart Homes. IEEE Internet Things J. 2022, 9, 4917–4927. [Google Scholar] [CrossRef]
- Yerrapragada, A.K.; Eisman, T.; Kelley, B. Physical Layer Security for Beyond 5G: Ultra Secure Low Latency Communications. IEEE Open J. Commun. Soc. 2021, 2, 2232–2242. [Google Scholar] [CrossRef]
- Toyran, M. More efficient implementations of CASCADE information reconciliation protocol. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; IEEE: New York, NY, USA, 2016; pp. 161–164. [Google Scholar]
- Bennett, C.H.; Bessette, F.; Zekrifa, D.M.S.; Salvail, L.; Smolin, J.A. Experimental Quantum Cryptography. J. Cryptol. 1992, 5, 3–28. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Z.; Yu, Y.; Hu, A. A Hybrid Information Reconciliation Method for Physical Layer Key Generation. Entropy 2019, 21, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, G.; Hu, A. An Adaptive Information Reconciliation Protocol for Physical-Layer Based Secret Key Generation. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Peng, L.; Li, G.; Zhang, J.; Hu, A. Securing M2M Transmissions Using Nonreconciled Secret Keys Generated from Wireless Channels. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Wan, Z.; Huang, K. Non-reconciliation Secret Keys Based Secure Transmission Scheme Using Polar Codes. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1499–1504. [Google Scholar]
- Hu, X.; Jin, L.; Huang, K.; Ma, K.; Song, C.; Xiao, S. A Secure Communication Scheme Based on Equivalent Interference Channel Assisted by Physical Layer Secret Keys. Secur. Commun. Netw. 2020, 2020, 8840645. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Z.; Zhang, J.; Hu, A. Encrypting Wireless Communications On the Fly Using One-Time Pad and Key Generation. IEEE Internet Things J. 2020, 28, 357–369. [Google Scholar] [CrossRef]
- Furqan, H.M.; Hamamreh, J.M.; Arslan, H. New Physical Layer Key Generation Dimensions: Subcarrier Indices/Positions-Based Key Generation. IEEE Commun. Lett. 2021, 25, 59–63. [Google Scholar] [CrossRef]
- Huang, K.; Jin, L.; Chen, Y.; Lou, Y. Development of wireless physical layer key generation technology and new challenges. J. Electron. Inf. Technol. 2020, 42, 2330–2341. [Google Scholar]
- Jin, L.; Zhang, S.; Lou, Y.; Xu, X.; Zhong, Z. Secret Key Generation with Cross Multiplication of Two-way Random Signals. IEEE Access 2019, 7, 113065–113080. [Google Scholar] [CrossRef]
SNR (BER, Code Rate) Coding Method | Low Code Rate (1/4) | Adaptive Coding | High Code Rate (1/2) |
---|---|---|---|
Low SNR (0 dB) | (0, 1/4) | (0, 0.28) | (, 1/2) |
High SNR (20 dB) | (0, 1/4) | (0, 0.94) | (0, 1/2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Huang, K.; Wan, Z.; Sun, X.; Jin, L.; Zhao, K. Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation. Entropy 2022, 24, 1167. https://doi.org/10.3390/e24081167
Wang M, Huang K, Wan Z, Sun X, Jin L, Zhao K. Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation. Entropy. 2022; 24(8):1167. https://doi.org/10.3390/e24081167
Chicago/Turabian StyleWang, Meng, Kaizhi Huang, Zheng Wan, Xiaoli Sun, Liang Jin, and Kai Zhao. 2022. "Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation" Entropy 24, no. 8: 1167. https://doi.org/10.3390/e24081167
APA StyleWang, M., Huang, K., Wan, Z., Sun, X., Jin, L., & Zhao, K. (2022). Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation. Entropy, 24(8), 1167. https://doi.org/10.3390/e24081167