Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional Evolution in Online Communities
Abstract
:1. Introduction
1.1. Institutional Change
1.1.1. The Arguments for Adaptive Selection
1.1.2. Arguments for Stochasticity
1.1.3. Integrating and Disentangling Selective and Stochastic Forces
1.2. The Price Equation
1.3. Online Communities
1.4. Time Variance and Institutional Diversity
2. Materials and Methods
2.1. Data
2.2. Price Equation
2.3. Bet-Hedging and Information Theory
3. Results
3.1. The Price Equation Result
3.2. Bet-Hedging Result
4. Discussion
4.1. Contributions and Implications
4.2. Limitations
4.3. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Plugins in Minecraft
References
- Plant, R. Online communities. Technol. Soc. 2004, 26, 51–65. [Google Scholar] [CrossRef]
- Monge, P.; Poole, M.S. The Evolution of Organizational Communication. J. Commun. 2008, 58, 679–692. [Google Scholar] [CrossRef]
- Monge, P.; Heiss, B.M.; Margolin, D.B. Communication Network Evolution in Organizational Communities. Commun. Theory 2008, 18, 449–477. [Google Scholar] [CrossRef]
- Monge, P.; Lee, S.; Fulk, J.; Weber, M.; Shen, C.; Schultz, C.; Margolin, D.; Gould, J.; Frank, L.B. Research Methods for Studying Evolutionary and Ecological Processes in Organizational Communication. Manag. Commun. Q. 2011, 25, 211–251. [Google Scholar] [CrossRef]
- Nelson, R.R.; Winter, S.G. Toward an evolutionary theory of economic capabilities. Am. Econ. Rev. 1973, 63, 440–449. [Google Scholar]
- Nelson, R.R. An Evolutionary Theory of Economic Change; Harvard University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Wilson, D.S.; Kirman, A. Complexity and Evolution: Toward a New Synthesis for Economics; MIT Press: Cambridge, MA, USA, 2016; Volume 19. [Google Scholar]
- Currie, T.E.; Turchin, P.; Bednar, J.; Richerson, P.J.; Schwesinger, G.; Steinmo, S.; Wacziarg, R.; Wallis, J.J. Evolution of Institutions and Organizations; MIT Press: Cambridge, MA, USA, 2016; Available online: https://ore.exeter.ac.uk/repository/handle/10871/29294 (accessed on 28 April 2022).
- Freeman, J.; Hannan, M.T. Niche Width and the Dynamics of Organizational Populations. Am. J. Sociol. 1983, 88, 1116–1145. [Google Scholar] [CrossRef]
- Padgett, J.F.; Powell, W.W. The Emergence of Organizations and Markets; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Aldrich, H. Organizations Evolving; Sage: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Richerson, P.J.; Boyd, R. Institutional evolution in the Holocene: The rise of complex societies. In Proceedings-British Academy; Oxford University Press Inc.: Oxford, UK, 2001; pp. 197–234. [Google Scholar]
- Price, G.R. Selection and covariance. Nature 1970, 227, 520–521. [Google Scholar] [CrossRef]
- Frank, S.A. Natural selection. IV. The price equation. J. Evol. Biol. 2012, 25, 1002–1019. [Google Scholar] [CrossRef]
- Frank, S.A. Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. J. Evol. Biol. 2012, 25, 2377–2396. [Google Scholar] [CrossRef]
- Coase, R. The new institutional economics. Am. Econ. Rev. 1998, 88, 72–74. [Google Scholar]
- North, D.C. Institutions. J. Econ. Perspect. 1991, 5, 97–112. [Google Scholar] [CrossRef]
- Williamson, O.E. Comparative Economic Organization: The Analysis of Discrete Structural Alternatives. Adm. Sci. Q. 1991, 36, 269. [Google Scholar] [CrossRef] [Green Version]
- Lewontin, R.C. The units of selection. Annu. Rev. Ecol. Syst. 1970, 1, 1–18. [Google Scholar] [CrossRef]
- North, D.C.; Thomas, R.P. The Rise of the Western World: A New Economic History; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Acemoglu, D.; Johnson, S.; Robinson, J.A. The colonial origins of comparative development: An empirical investigation. Am. Econ. Rev. 2001, 91, 1369–1401. [Google Scholar] [CrossRef]
- Boix, C. Democracy and Redistribution; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ostrom, E. Understanding Institutional Diversity; Princeton University Press: Princeton, NJ, USA, 2005; Volume 241. [Google Scholar]
- Jen, E. Robust Design: A Repertoire of Biological, Ecological, and Engineering Case Studies; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Page, S. Diversity and Complexity; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Wilson, D.S.; Ostrom, E.; Cox, M.E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 2013, 90, S21–S32. [Google Scholar] [CrossRef]
- Castells, M. The information age: Economy, society and culture (3 volumes). Blackwell 1996, 1997, 1998. [Google Scholar]
- Frey, S.; Schneider, N. Effective voice: Beyond exit and affect in online communities. New Media Soc. September 2021. [Google Scholar] [CrossRef]
- Banzhaf, H.S.; Walsh, R.P. Do People Vote with Their Feet? An Empirical Test of Tiebout’s Mechanism. Am. Econ. Rev. 2008, 98, 843–863. [Google Scholar] [CrossRef]
- Zhong, Q.; Frey, S. Institutional Similarity Drives Cultural Similarity among Online Communities. arXiv 2020, arXiv:200904597. Available online: http://arxiv.org/abs/2009.04597 (accessed on 28 April 2022).
- Acemoglu, D.; Ticchi, D.; Vindigni, A. Emergence and persistence of inefficient states. J. Eur. Econ. Assoc. 2011, 9, 177–208. [Google Scholar] [CrossRef]
- Greif, A.; Laitin, D.D. A Theory of Endogenous Institutional Change. Am. Politi-Sci. Rev. 2004, 98, 633–652. [Google Scholar] [CrossRef]
- Bergek, A.; Jacobsson, S.; Sandén, B.A. ‘Legitimation’and ‘development of positive externalities’: Two key processes in the formation phase of technological innovation systems. Technol. Anal. Strateg. Manag. 2008, 20, 575–592. [Google Scholar] [CrossRef]
- Martin, R. Roepke Lecture in Economic Geography-Rethinking Regional Path Dependence: Beyond Lock-in to Evolution. Econ. Geogr. 2010, 86, 1–27. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Harrison, A.T.; Cohen, M.D.; March, J.G.; Epstein, L.D. Leadership and Ambiguity: The American College President. AAUP Bull. 1975, 61, 255. [Google Scholar] [CrossRef]
- Orru, M.; Biggart, N.W.; Hamilton, G. The Economic Organization of East Asian Capitalism; Sage: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Owen-Smith, J.; Powell, W.W. Networks and institutions. In The Sage Handbook of Organizational Institutionalism; Sage London: London, UK, 2008; pp. 596–623. [Google Scholar]
- Plantin, J.-C.; Lagoze, C.; Edwards, P.N.; Sandvig, C. Infrastructure studies meet platform studies in the age of Google and Facebook. New Media Soc. 2018, 20, 293–310. [Google Scholar] [CrossRef]
- Lowrey, W. Commitment to Newspaper-TV Partnering: A Test of the Impact of Institutional Isomorphism. J. Mass Commun. Q. 2005, 82, 495–515. [Google Scholar] [CrossRef]
- Monge, P.R.; Peter, R.; Contractor, N.S.; Contractor, P.S.; Noshir, S. Theories of Communication Networks; Oxford University Press: Cary, NC, USA, 2003. [Google Scholar]
- Powell, W.W.; White, D.R.; Koput, K.W.; Owen-Smith, J. Network Dynamics and Field Evolution: The Growth of Interorganizational Collaboration in the Life Sciences. Am. J. Sociol. 2005, 110, 1132–1205. [Google Scholar] [CrossRef]
- Alesina, A.; Giuliano, P. Culture and institutions. J. Econ. Lit. 2015, 53, 898–944. [Google Scholar] [CrossRef]
- Frank, S.A. The Price equation, Fisher’s fundamental theorem, kin selection, and causal analysis. Evolution 1997, 51, 1712–1729. [Google Scholar] [CrossRef]
- Hill, B.M.; Shaw, A. Studying populations of online communities. In The Handbook of Networked Communication; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Frey, S.; Zhong, Q.; Bulat, B.; Weisman, W.D.; Liu, C.; Fujimoto, S.; Wang, H.M.; Schweik, C.M. Governing online goods: Maturity and formalization in Minecraft, Reddit, and World of Warcraft communities. arXiv 2022, arXiv:2202.01317. [Google Scholar]
- Sproull, L.; Dutton, W.; Kiesler, S. Introduction to the special issue: Online communities. In Organization Studies; Sage: London, UK, 2007; pp. 277–281. [Google Scholar]
- Faraj, S.; Johnson, S.L. Network Exchange Patterns in Online Communities. Organ. Sci. 2011, 22, 1464–1480. [Google Scholar] [CrossRef]
- TeBlunthuis, N.; Shaw, A.; Hill, B.M. Density Dependence Without Resource Partitioning: Population Ecology on Change.org. In Companion of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing; (CSCW ’17 Companion); Association for Computing Machinery: New York, NY, USA, 2017; pp. 323–326. [Google Scholar] [CrossRef]
- Vincent, N.; Johnson, I.; Hecht, B. Examining Wikipedia with a broader lens: Quantifying the value of Wikipedia’s relationships with other large-scale online communities. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 11 October 2018; pp. 1–13. [Google Scholar]
- Xing, W.; Goggins, S.; Introne, J. Quantifying the Effect of Informational Support on Membership Retention in Online Communities through Large-Scale Data Analytics. Comput. Hum. Behav. 2018, 86, 227–234. [Google Scholar] [CrossRef]
- Rogers, A.R. Does biology constrain culture? Am. Anthropol. 1988, 90, 819–831. [Google Scholar] [CrossRef]
- Giuliano, P.; Nunn, N. Understanding Cultural Persistence and Change. Rev. Econ. Stud. 2021, 88, 1541–1581. [Google Scholar] [CrossRef]
- Levitt, B.; March, J.G. Organizational learning. Annu. Rev. Sociol. 1988, 14, 319–338. [Google Scholar] [CrossRef]
- Lessig, L. Code is law. Harv. Mag. 2000, 1, 2000. [Google Scholar]
- Frey, S.; Sumner, R.W. Emergence of integrated institutions in a large population of self-governing communities. PLoS ONE 2019, 14, e0216335. [Google Scholar] [CrossRef]
- Boyd, R.; Richerson, P.J. Culture and the Evolutionary Process; The University of Chicago Press: Chicago, IL, USA, 1985; Available online: https://opus4.kobv.de/opus4-Fromm/frontdoor/index/index/docId/27493 (accessed on 28 April 2022).
- Brantingham, P.J.; Perreault, C. Detecting the effects of selection and stochastic forces in archaeological assemblages. J. Archaeol. Sci. 2010, 37, 3211–3225. [Google Scholar] [CrossRef]
- Gong, T.; Shuai, L.; Tamariz, M.; Jäger, G. Studying Language Change Using Price Equation and Pólya-urn Dynamics. PLoS ONE 2012, 7, e33171. [Google Scholar] [CrossRef]
- Nettle, D. Selection, adaptation, inheritance and design in human culture: The view from the Price equation. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190358. [Google Scholar] [CrossRef]
- Sæther, B.-E.; Engen, S. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 2015, 30, 273–281. [Google Scholar] [CrossRef]
- Hilbert, M. Complementary Variety: When Can Cooperation in Uncertain Environments Outperform Competitive Selection? Complexity 2017, 2017, 5052071. Available online: https://www.hindawi.com/journals/complexity/2017/5052071/ (accessed on 28 April 2022). [CrossRef]
- Hilbert, M. The More You Know, the More You Can Grow: An Information Theoretic Approach to Growth in the Information Age. Entropy 2017, 19, 82. [Google Scholar] [CrossRef]
- Kelly, J.L., Jr. A new interpretation of information rate. In The Kelly Capital Growth Investment Criterion: Theory and Practice; World Scientific: Singapore, 2011; pp. 25–34. [Google Scholar]
- Haccou, P.; Iwasa, Y. Optimal Mixed Strategies in Stochastic Environments. Theor. Popul. Biol. 1995, 47, 212–243. [Google Scholar] [CrossRef]
- Kussell, E.; Leibler, S. Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments. Science 2005, 309, 2075–2078. [Google Scholar] [CrossRef]
- Donaldson-Matasci, M.C.; Bergstrom, C.T.; Lachmann, M. The fitness value of information. Oikos 2010, 119, 219–230. [Google Scholar] [CrossRef]
- Rivoire, O.; Leibler, S. The Value of Information for Populations in Varying Environments. J. Stat. Phys. 2011, 142, 1124–1166. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Perrow, C. The bureaucratic paradox: The efficient organization centralizes in order to decentralize. Organ. Dyn. 1977, 5, 3–14. [Google Scholar] [CrossRef]
- Perrow, C. A society of organizations. Theory Soc. 1991, 20, 725–762. [Google Scholar] [CrossRef]
- Hilbert, M. Formal definitions of information and knowledge and their role in growth through structural change. Struct. Chang. Econ. Dyn. 2016, 38, 69–82. [Google Scholar] [CrossRef]
- Lamberson, P.J.; Page, S.E. Optimal Forecasting Groups. Manag. Sci. 2012, 58, 805–810. [Google Scholar] [CrossRef]
- Bednar, J.; Page, S.E. When Order Affects Performance: Culture, Behavioral Spillovers, and Institutional Path Dependence. Am. Politi-Sci. Rev. 2018, 112, 82–98. [Google Scholar] [CrossRef]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef]
- Barker, G.; Odling-Smee, J. Integrating ecology and evolution: Niche construction and ecological engineering. In Entangled Life; Barker, G., Desjardins, E., Pearce, T., Eds.; History, Philosophy and Theory of the Life Sciences; Springer: Dordrecht, The Netherlands, 2013; Volume 4, pp. 187–211. Available online: http://link.springer.com/10.1007/978-94-007-7067-6_10 (accessed on 28 April 2022).
- Henrich, J.; Boyd, R.; Richerson, P.J. Five Misunderstandings About Cultural Evolution. Hum. Nat. 2008, 19, 119–137. [Google Scholar] [CrossRef]
- Frank, S.A. Natural selection. VI. Partitioning the information in fitness and characters by path analysis. J. Evol. Biol. 2013, 26, 457–471. [Google Scholar] [CrossRef] [Green Version]
State | Growth of Rule i | Growth of Other Rules |
---|---|---|
Good state for centralized rules | G1 | g1 |
Bad state for centralized rules | g2 | G2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Frey, S.; Hilbert, M. Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional Evolution in Online Communities. Entropy 2022, 24, 1185. https://doi.org/10.3390/e24091185
Zhong Q, Frey S, Hilbert M. Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional Evolution in Online Communities. Entropy. 2022; 24(9):1185. https://doi.org/10.3390/e24091185
Chicago/Turabian StyleZhong, Qiankun, Seth Frey, and Martin Hilbert. 2022. "Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional Evolution in Online Communities" Entropy 24, no. 9: 1185. https://doi.org/10.3390/e24091185
APA StyleZhong, Q., Frey, S., & Hilbert, M. (2022). Quantifying the Selective, Stochastic, and Complementary Drivers of Institutional Evolution in Online Communities. Entropy, 24(9), 1185. https://doi.org/10.3390/e24091185