Critical Phenomena in Light–Matter Systems with Collective Matter Interactions
Abstract
:1. Introduction
2. Generalized Dicke Hamiltonian
3. Classical Corresponding Hamiltonian
4. Energy Surfaces and Their Extrema
4.1. Deformation of the Normal Phase
4.2. Tavis–Cummings Limit
4.2.1. Superradiant-Symmetric Phase
4.2.2. Superradiant-x Phase
4.2.3. Superradiant-y Phase
4.2.4. Quantum Phases in the Tavis–Cummings Limit
4.3. Dicke Limit
4.3.1. Superradiant-x Phase
4.3.2. Deformed Phase
4.3.3. Quantum Phases in the Dicke Limit
4.4. Arbitrary Coupling
4.4.1. Superradiant-x and y Phases
4.4.2. Quantum Phases for Arbitrary Coupling
5. Semiclassical Density of States
5.1. Energy Domains in the TC Limit
- (a)
- The upper interval where . Here, the function is always less than one. The whole pseudospin sphere is available: and . Consequently, the available phase space volume (per j) saturates to its limiting value .
- (b)
- The interval where . Here, takes values only in the interval with . This interval is always present for all values of parameters and corresponds to available phase space from the absolute minimum point at and the absolute maximum at .
- (c)
- The interval that is only present in the superradiant-y phase, .
- (d)
- The interval arising in presence of both the superradiant-x and y phases, . Here, the south pole of the pseudospin sphere () is inaccessible and the variable is restricted to the interval . Considering that is the ground-state energy in the superradiant-x phase.
5.2. Energy Domains in the Dicke Limit
- (a)
- The interval , where, as in the TC model the whole pseudo-spin sphere is available , , and .
- (b)
- The interval . Here, the variable takes values only in the interval and is restricted. When , takes values in the whole interval , but if , .
- (c)
- The interval . It only appears in the deformed phase.
- (d)
- The lower interval . Here, the south pole of the Bloch sphere is inaccessible and the variable becomes restricted to the interval .
5.3. Energy Domains for Arbitrary Couplings and Typology of ESQPTs
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DoS | Density of States |
QPT | Quantum Phase Transition |
ESQPT | Excited-State Quantum Phase Transition |
TC | Tavis–Cummings |
LMG | Lipking–Meshkov–Glick |
SC | Strong coupling |
USC | Ultra-strong coupling |
Appendix A. Hamilton Equations for the TC and Dicke Limits
Appendix B. Variables to Plot Energy Surfaces
Appendix C. Hessian Matrix
Appendix C.1. Hessian Determinant in the Tavis–Cummings Limit
Appendix C.2. Hessian Determinant in the Dicke Limit
References
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Carr, L.D. Understanding Quantum Phase Transitions; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Caprio, M.A.; Cejnar, P.; Iachello, F. Excited state quantum phase transitions in many-body systems. Ann. Phys. 2008, 323, 1106–1135. [Google Scholar] [CrossRef]
- Stránský, P.; Macek, M.; Cejnar, P. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties. Ann. Phys. 2014, 345, 73–97. [Google Scholar] [CrossRef]
- Stránský, P.; Macek, M.; Leviatan, A.; Cejnar, P. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects. Ann. Phys. 2015, 356, 57–82. [Google Scholar] [CrossRef]
- Cejnar, P.; Stránský, P.; Macek, M.; Kloc, M. Excited-state quantum phase transitions. J. Phys. A Math. Theor. 2021, 54, 133001. [Google Scholar] [CrossRef]
- Klinder, J.; Keßler, H.; Wolke, M.; Mathey, L.; Hemmerich, A. Dynamical phase transition in the open Dicke model. Proc. Natl. Acad. Sci. USA 2015, 112, 3290–3295. [Google Scholar] [CrossRef] [PubMed]
- Heyl, M. Dynamical quantum phase transitions: A review. Rep. Prog. Phys. 2018, 81, 054001. [Google Scholar] [CrossRef]
- Link, V.; Strunz, W.T. Dynamical Phase Transitions in Dissipative Quantum Dynamics with Quantum Optical Realization. Phys. Rev. Lett. 2020, 125, 143602. [Google Scholar] [CrossRef]
- Hepp, K.; Lieb, E.H. On the superradiant phase transition for molecules in a quantized radiation field: The dicke maser model. Ann. Phys. 1973, 76, 360–404. [Google Scholar] [CrossRef]
- Wang, Y.K.; Hioe, F.T. Phase Transition in the Dicke Model of Superradiance. Phys. Rev. A 1973, 7, 831–836. [Google Scholar] [CrossRef]
- Dicke, R.H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Forn-Díaz, P.; Lamata, L.; Rico, E.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 2019, 91, 025005. [Google Scholar] [CrossRef]
- Frisk Kockum, A.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019, 1, 19–40. [Google Scholar] [CrossRef]
- Peraca, N.M.; Baydin, A.; Gao, W.; Bamba, M.; Kono, J. Chapter Three—Ultrastrong light–matter coupling in semiconductors. In Semiconductor Quantum Science and Technology; Semiconductors and Semimetals; Cundiff, S.T., Kira, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 105, pp. 89–151. [Google Scholar] [CrossRef]
- Garraway, B.M. The Dicke model in quantum optics: Dicke model revisited. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1137–1155. [Google Scholar] [CrossRef] [PubMed]
- Kirton, P.; Roses, M.M.; Keeling, J.; Dalla Torre, E.G. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa. Adv. Quantum Technol. 2019, 2, 1800043. [Google Scholar] [CrossRef]
- Le Boité, A. Theoretical Methods for Ultrastrong Light–Matter Interactions. Adv. Quantum Technol. 2020, 3, 1900140. [Google Scholar] [CrossRef]
- Larson, J.; Mavrogordatos, T. The Jaynes–Cummings Model and Its Descendants; IOP Publishing: Bristol, UK, 2021; pp. 2053–2563. [Google Scholar] [CrossRef]
- Schneble, D.; Torii, Y.; Boyd, M.; Streed, E.W.; Pritchard, D.E.; Ketterle, W. The Onset of Matter-Wave Amplification in a Superradiant Bose-Einstein Condensate. Science 2003, 300, 475–478. [Google Scholar] [CrossRef]
- Baumann, K.; Guerlin, C.; Brennecke, F.; Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 2010, 464, 1301–1306. [Google Scholar] [CrossRef]
- Baumann, K.; Mottl, R.; Brennecke, F.; Esslinger, T. Exploring Symmetry Breaking at the Dicke Quantum Phase Transition. Phys. Rev. Lett. 2011, 107, 140402. [Google Scholar] [CrossRef]
- Keeling, J.; Bhaseen, M.J.; Simons, B.D. Collective Dynamics of Bose-Einstein Condensates in Optical Cavities. Phys. Rev. Lett. 2010, 105, 043001. [Google Scholar] [CrossRef]
- Blais, A.; Huang, R.S.; Wallraff, A.; Girvin, S.M.; Schoelkopf, R.J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 2004, 69, 062320. [Google Scholar] [CrossRef]
- Casanova, J.; Romero, G.; Lizuain, I.; García-Ripoll, J.J.; Solano, E. Deep Strong Coupling Regime of the Jaynes-Cummings Model. Phys. Rev. Lett. 2010, 105, 263603. [Google Scholar] [CrossRef] [PubMed]
- Mezzacapo, A.; Las Heras, U.; Pedernales, J.S.; DiCarlo, L.; Solano, E.; Lamata, L. Digital Quantum Rabi and Dicke Models in Superconducting Circuits. Sci. Rep. 2014, 4, 7482. [Google Scholar] [CrossRef] [PubMed]
- Dimer, F.; Estienne, B.; Parkins, A.S.; Carmichael, H.J. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Phys. Rev. A 2007, 75, 013804. [Google Scholar] [CrossRef]
- Baden, M.P.; Arnold, K.J.; Grimsmo, A.L.; Parkins, S.; Barrett, M.D. Realization of the Dicke Model Using Cavity-Assisted Raman Transitions. Phys. Rev. Lett. 2014, 113, 020408. [Google Scholar] [CrossRef] [PubMed]
- Nagy, D.; Kónya, G.; Szirmai, G.; Domokos, P. Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett. 2010, 104, 130401. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Lian, J.; Ma, J.; Xiao, L.; Chen, G.; Liang, J.Q.; Jia, S. Light-shift-induced quantum phase transitions of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 2011, 83, 033601. [Google Scholar] [CrossRef]
- Yuan, J.B.; Lu, W.J.; Song, Y.J.; Kuang, L.M. Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate. Sci. Rep. 2017, 7, 7404. [Google Scholar] [CrossRef]
- Jaako, T.; Xiang, Z.L.; Garcia-Ripoll, J.J.; Rabl, P. Ultrastrong-coupling phenomena beyond the Dicke model. Phys. Rev. A 2016, 94, 033850. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.J.; Wang, X.B. Ultrastrong-coupling quantum-phase-transition phenomena in a few-qubit circuit QED system. Phys. Rev. A 2017, 95, 043823. [Google Scholar] [CrossRef]
- De Bernardis, D.; Jaako, T.; Rabl, P. Cavity quantum electrodynamics in the nonperturbative regime. Phys. Rev. A 2018, 97, 043820. [Google Scholar] [CrossRef]
- Pilar, P.; De Bernardis, D.; Rabl, P. Thermodynamics of ultrastrongly coupled light-matter systems. Quantum 2020, 4, 335. [Google Scholar] [CrossRef]
- Auerbach, N.; Zelevinsky, V. Super-radiant dynamics, doorways and resonances in nuclei and other open mesoscopic systems. Rep. Prog. Phys. 2011, 74, 106301. [Google Scholar]
- Cong, K.; Zhang, Q.; Wang, Y.; Noe, G.T.; Belyanin, A.; Kono, J. Dicke superradiance in solids. J. Opt. Soc. Am. B 2016, 33, C80–C101. [Google Scholar] [CrossRef]
- Hagenmüller, D.; Ciuti, C. Cavity QED of the Graphene Cyclotron Transition. Phys. Rev. Lett. 2012, 109, 267403. [Google Scholar] [CrossRef]
- Chirolli, L.; Polini, M.; Giovannetti, V.; MacDonald, A.H. Drude Weight, Cyclotron Resonance, and the Dicke Model of Graphene Cavity QED. Phys. Rev. Lett. 2012, 109, 267404. [Google Scholar] [CrossRef] [PubMed]
- Scheibner, M.; Schmidt, T.; Worschech, L.; Forchel, A.; Bacher, G.; Passow, T.; Hommel, D. Superradiance of quantum dots. Nat. Phys. 2007, 3, 106–110. [Google Scholar] [CrossRef]
- Lambert, N.; Emary, C.; Brandes, T. Entanglement and the Phase Transition in Single-Mode Superradiance. Phys. Rev. Lett. 2004, 92, 073602. [Google Scholar] [CrossRef]
- Brandes, T. Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 2005, 408, 315–474. [Google Scholar] [CrossRef]
- Vidal, J.; Dusuel, S. Finite-size scaling exponents in the Dicke model. EPL (Europhys. Lett.) 2006, 74, 817. [Google Scholar]
- De Aguiar, M.A.M.; Furuya, K.; Lewenkopf, C.H.; Nemes, M.C. Particle-Spin Coupling in a Chaotic System: Localization-Delocalization in the Husimi Distributions. EPL (Europhys. Lett.) 1991, 15, 125. [Google Scholar]
- De Aguiar, M.; Furuya, K.; Lewenkopf, C.; Nemes, M. Chaos in a spin-boson system: Classical analysis. Ann. Phys. 1992, 216, 291–312. [Google Scholar] [CrossRef]
- Furuya, K.; de Aguiar, M.; Lewenkopf, C.; Nemes, M. Husimi distributions of a spin-boson system and the signatures of its classical dynamics. Ann. Phys. 1992, 216, 313–322. [Google Scholar] [CrossRef]
- Bastarrachea-Magnani, M.A.; López-del-Carpio, B.; Lerma-Hernández, S.; Hirsch, J.G. Chaos in the Dicke model: Quantum and semiclassical analysis. Phys. Scr. 2015, 90, 068015. [Google Scholar]
- Larson, J.; Irish, E.K. Some remarks on ‘superradiant’ phase transitions in light-matter systems. J. Phys. A Math. Theor. 2017, 50, 174002. [Google Scholar]
- Chen, G.; Zhao, D.; Chen, Z. Quantum phase transition for the Dicke model with the dipole–dipole interactions. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 3315–3320. [Google Scholar] [CrossRef]
- Abdel-Rady, A.S.; Hassan, S.S.A.; Osman, A.N.A.; Salah, A. Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System. Int. J. Theor. Phys. 2017, 56, 3655–3666. [Google Scholar] [CrossRef]
- Salah, A.; Abdel-Rady, A.S.; Osman, A.N.A.; Hassan, S.S.A. Enhancing quantum phase transitions in the critical point of Extended TC-Dicke model via Stark effect. Sci. Rep. 2018, 8, 11633. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Z.; Liang, J.Q. Ground-state properties for coupled Bose-Einstein condensates inside a cavity quantum electrodynamics. Europhys. Lett. (EPL) 2007, 80, 40004. [Google Scholar] [CrossRef]
- Rodríguez-Lara, B.M.; Lee, R.K. Classical dynamics of a two-species condensate driven by a quantum field. Phys. Rev. E 2011, 84, 016225. [Google Scholar] [CrossRef]
- Sinha, S.; Sinha, S. Dissipative Bose-Josephson junction coupled to bosonic baths. Phys. Rev. E 2019, 100, 032115. [Google Scholar] [CrossRef]
- Rodriguez, J.P.J.; Chilingaryan, S.A.; Rodríguez-Lara, B.M. Critical phenomena in an extended Dicke model. Phys. Rev. A 2018, 98, 043805. [Google Scholar] [CrossRef]
- Sinha, S.; Sinha, S. Chaos and Quantum Scars in Bose-Josephson Junction Coupled to a Bosonic Mode. Phys. Rev. Lett. 2020, 125, 134101. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.F.; Johnson, N.F. First-Order Superradiant Phase Transitions in a Multiqubit Cavity System. Phys. Rev. Lett. 2004, 93, 083001. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, X.; Liang, J.Q.; Wang, Z.D. Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity. Phys. Rev. A 2008, 78, 023634. [Google Scholar] [CrossRef]
- Chen, Q.H.; Liu, T.; Zhang, Y.Y.; Wang, K.L. Quantum phase transitions in coupled two-level atoms in a single-mode cavity. Phys. Rev. A 2010, 82, 053841. [Google Scholar] [CrossRef]
- Robles Robles, R.A.; Chilingaryan, S.A.; Rodríguez-Lara, B.M.; Lee, R.K. Ground state in the finite Dicke model for interacting qubits. Phys. Rev. A 2015, 91, 033819. [Google Scholar] [CrossRef]
- Bastarrachea-Magnani, M.A.; Lerma-Hernández, S.; Hirsch, J.G. Comparative quantum and semiclassical analysis of atom-field systems. I. Density of states and excited-state quantum phase transitions. Phys. Rev. A 2014, 89, 032101. [Google Scholar] [CrossRef]
- Bastarrachea-Magnani, M.A.; Lerma-Hernández, S.; Hirsch, J.G. Thermal and quantum phase transitions in atom-field systems: A microcanonical analysis. J. Stat. Mech. Theory Exp. 2016, 2016, 093105. [Google Scholar] [CrossRef]
- Joshi, A.; Puri, R.R.; Lawande, S.V. Effect of dipole interaction and phase-interrupting collisions on the collapse-and-revival phenomenon in the Jaynes-Cummings model. Phys. Rev. A 1991, 44, 2135–2140. [Google Scholar] [CrossRef]
- Tavis, M.; Cummings, F.W. Exact Solution for an N-Molecule—Radiation-Field Hamiltonian. Phys. Rev. 1968, 170, 379–384. [Google Scholar] [CrossRef]
- Pérez-Fernández, P.; Relaño, A.; Arias, J.M.; Cejnar, P.; Dukelsky, J.; García-Ramos, J.E. Excited-state phase transition and onset of chaos in quantum optical models. Phys. Rev. E 2011, 83, 046208. [Google Scholar] [CrossRef]
- Brandes, T. Excited-state quantum phase transitions in Dicke superradiance models. Phys. Rev. E 2013, 88, 032133. [Google Scholar] [CrossRef] [PubMed]
- Bastarrachea-Magnani, M.A.; Lerma-Hernández, S.; Hirsch, J.G. Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity. Phys. Rev. A 2014, 89, 032102. [Google Scholar] [CrossRef] [Green Version]
- Stránský, P.; Cejnar, P. Classification of excited-state quantum phase transitions for arbitrary number of degrees of freedom. Phys. Lett. A 2016, 380, 2637–2643. [Google Scholar] [CrossRef]
- Kloc, M.; Stránský, P.; Cejnar, P. Quantum phases and entanglement properties of an extended Dicke model. Ann. Phys. 2017, 382, 85–111. [Google Scholar] [CrossRef]
- Stránský, P.; Kloc, M.; Cejnar, P. Excited-state quantum phase transitions and their manifestations in an extended Dicke model. AIP Conf. Proc. 2017, 1912, 020018. [Google Scholar] [CrossRef]
- Lipkin, H.J.; Meshkov, N.; Glick, A. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 1965, 62, 188–198. [Google Scholar] [CrossRef]
- Meshkov, N.; Glick, A.J.; Lipkin, H.J. Validity of many-body approximation methods for a solvable model: (II). Linearization procedures. Nucl. Phys. 1965, 62, 199–210. [Google Scholar] [CrossRef]
- Glick, A.J.; Lipkin, H.J.; Meshkov, N. Validity of many-body approximation methods for a solvable model: (III). Diagram summations. Nucl. Phys. 1965, 62, 211–224. [Google Scholar] [CrossRef]
- Chen, G.; Liang, J.Q.; Jia, S. Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity. Opt. Express 2009, 17, 19682–19690. [Google Scholar] [CrossRef]
- Dusuel, S.; Vidal, J. Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick Model. Phys. Rev. Lett. 2004, 93, 237204. [Google Scholar] [CrossRef] [PubMed]
- Dusuel, S.; Vidal, J. Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model. Phys. Rev. B 2005, 71, 224420. [Google Scholar] [CrossRef]
- Castaños, O.; López-Peña, R.; Hirsch, J.G.; López-Moreno, E. Classical and quantum phase transitions in the Lipkin-Meshkov-Glick model. Phys. Rev. B 2006, 74, 104118. [Google Scholar] [CrossRef]
- Heiss, W.D.; Scholtz, F.G.; Geyer, H.B. The large N behaviour of the Lipkin model and exceptional points. J. Phys. A Math. Gen. 2005, 38, 1843. [Google Scholar] [CrossRef]
- Leyvraz, F.; Heiss, W.D. Large-N Scaling Behavior of the Lipkin-Meshkov-Glick Model. Phys. Rev. Lett. 2005, 95, 050402. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.D. On the thermodynamic limit of the Lipkin model. J. Phys. A Math. Gen. 2006, 39, 10081. [Google Scholar] [CrossRef]
- Ribeiro, P.; Vidal, J.; Mosseri, R. Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. Phys. Rev. E 2008, 78, 021106. [Google Scholar] [CrossRef]
- Engelhardt, G.; Bastidas, V.M.; Kopylov, W.; Brandes, T. Excited-state quantum phase transitions and periodic dynamics. Phys. Rev. A 2015, 91, 013631. [Google Scholar] [CrossRef]
- García-Ramos, J.E.; Pérez-Fernández, P.; Arias, J.M. Excited-state quantum phase transitions in a two-fluid Lipkin model. Phys. Rev. C 2017, 95, 054326. [Google Scholar] [CrossRef]
- Chávez-Carlos, J.; Bastarrachea-Magnani, M.A.; Lerma-Hernández, S.; Hirsch, J.G. Classical chaos in atom-field systems. Phys. Rev. E 2016, 94, 022209. [Google Scholar] [CrossRef]
- Zhang, W.M.; Feng, D.H.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867–927. [Google Scholar] [CrossRef]
- Castaños, O.; López-Peña, R.; Nahmad-Achar, E.; Hirsch, J.G.; López-Moreno, E.; Vitela, J.E. Coherent state description of the ground state in the Tavis–Cummings model and its quantum phase transitions. Phys. Scr. 2009, 79, 065405. [Google Scholar] [CrossRef]
- Ribeiro, A.D.; de Aguiar, M.A.M.; de Toledo Piza, A.F.R. The semiclassical coherent state propagator for systems with spin. J. Phys. A Math. Gen. 2006, 39, 3085–3097. [Google Scholar] [CrossRef] [Green Version]
- Pilatowsky-Cameo, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M.A.; Stránský, P.; Lerma-Hernández, S.; Santos, L.F.; Hirsch, J.G. Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Phys. Rev. E 2020, 101, 010202. [Google Scholar] [CrossRef] [PubMed]
- Yi-Xiang, Y.; Ye, J.; Liu, W.M. Goldstone and Higgs modes of photons inside a cavity. Sci. Rep. 2013, 3, 3476. [Google Scholar] [CrossRef] [PubMed]
- Klimov, A.B.; Chumakov, S.M. A Group-Theoretical Approach to Quantum Optics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Liu, N.; Liang, J.Q. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction. Commun. Theor. Phys. 2017, 67, 511. [Google Scholar] [CrossRef]
- Haake, F.; Gnutzmann, S.; Kuś, M. Quantum Signatures of Chaos; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera Romero, R.; Bastarrachea-Magnani, M.A.; Linares, R. Critical Phenomena in Light–Matter Systems with Collective Matter Interactions. Entropy 2022, 24, 1198. https://doi.org/10.3390/e24091198
Herrera Romero R, Bastarrachea-Magnani MA, Linares R. Critical Phenomena in Light–Matter Systems with Collective Matter Interactions. Entropy. 2022; 24(9):1198. https://doi.org/10.3390/e24091198
Chicago/Turabian StyleHerrera Romero, Ricardo, Miguel Angel Bastarrachea-Magnani, and Román Linares. 2022. "Critical Phenomena in Light–Matter Systems with Collective Matter Interactions" Entropy 24, no. 9: 1198. https://doi.org/10.3390/e24091198
APA StyleHerrera Romero, R., Bastarrachea-Magnani, M. A., & Linares, R. (2022). Critical Phenomena in Light–Matter Systems with Collective Matter Interactions. Entropy, 24(9), 1198. https://doi.org/10.3390/e24091198