Quantum Correlation Swapping between Two Werner States Undergoing Local and Nonlocal Unitary Operations
Abstract
:1. Introduction
2. Swapping QCs in Two Werner States Undergoing Local and Nonlocal Unitary Operations
3. MID in the Concerned States
3.1. MIDs in the Two Initial Werner-Like States
3.2. MIDs in the Final States
3.3. MID in the Final States
4. AMID in the Concerned States
4.1. AMID in the Two Werner-Like Initial States
4.2. AMIDs in the Final States
4.3. AMIDs in the Final States
5. Analyses, Comparisons and Discussion
5.1. Features of QCs in the Initail Werner-Like States
5.2. Monotony Features of MIDs in the Final States
5.2.1. Monotony Features of MIDs in the Final State
5.2.2. Monotony Features of MIDs in the Final State
5.3. Monotony Feature of AMIDs in the Final States
5.3.1. Monotony Features of AMIDs in the Final State
5.3.2. Monotony Features of AMIDs in the Final State
5.4. Comparisons between MID and AMID in the Final States
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Briegel, H.J.; Dür, W.; Cirac, J.I.; Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 1998, 81, 5932–5935. [Google Scholar] [CrossRef]
- Munro, W.J.; Van, M.R.; Louis, S.G.; Nemoto, K. High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 2008, 101, 040502. [Google Scholar] [CrossRef] [PubMed]
- Zukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 1993, 71, 4287. [Google Scholar] [CrossRef]
- Goebel, A.M.; Wagenknecht, C.; Zhang, Q.; Chen, Y.A.; Chen, K.; Schmiedmayer, J.; Pan, J.W. Multistage entanglement swapping. Phys. Rev. Lett. 2008, 101, 080403. [Google Scholar] [CrossRef]
- Branciard, C.; Gisin, N.; Pironio, S. Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 2010, 104, 170401. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.M.; Deshpande, A.; Sakharwade, N. Remote tomography and entanglement swapping via von Neumann-Arthurs-Kelly interaction. Phys. Rev. A 2014, 89, 052107. [Google Scholar] [CrossRef]
- Ottaviani, C.; Lupo, C.; Ferraro, A.; Paternostro, M.; Pirandola, S. Multipartite entanglement swapping and mechanical cluster states. Phys. Rev. A 2019, 99, 030301. [Google Scholar] [CrossRef]
- Modlawska, J.; Grudka, A. Increasing singlet fraction with entanglement swapping. Phys. Rev. A 2008, 78, 032321. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bohr, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 48, 696. [Google Scholar] [CrossRef]
- Ekert, A. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [PubMed]
- William, K.W. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar]
- Long, G.L.; Liu, X.S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Zhang, Z.J. Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 2009, 80, 022327. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef]
- Xiao, L.; Long, G.L.; Deng, F.G.; Pan, J.W. Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 2004, 69, 052307. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L.; Liu, X.S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 2003, 68, 042317. [Google Scholar] [CrossRef]
- Zhu, A.D.; Xia, Y.; Fan, Q.B.; Zhang, S. Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 2006, 73, 022338. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Luo, S.L. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 2008, 77, 022301. [Google Scholar] [CrossRef]
- Luo, S.L.; Fu, S.S. Geometric measure of quantum discord. Phys. Rev. A 2010, 82, 034302. [Google Scholar] [CrossRef]
- Zhou, T.; Cui, J.; Long, G.L. Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 2011, 84, 062105. [Google Scholar] [CrossRef]
- Girolami, D.; Paternostro, M.; Adesso, G. Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 2011, 44, 352002. [Google Scholar] [CrossRef]
- Modi, K.; Paterek, T.; Son, W.; Vedral, V.; Williamson, M. Unified view of quantum and classical correlations. Phys. Rev. Lett. 2010, 104, 080501. [Google Scholar] [CrossRef]
- Dakic, B.; Vedral, V.; Brukner, C. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 2010, 105, 190502. [Google Scholar] [CrossRef]
- Rulli, C.C.; Sarandy, M.S. Global quantum discord in multipartite systems. Phys. Rev. A 2011, 84, 042109. [Google Scholar] [CrossRef]
- Zhang, Z.J. Revised definitions of quantum dissonance and quantum discord. arXiv 2010, arXiv:1011.4333. [Google Scholar]
- Wei, H.R.; Ren, B.C.; Deng, F.G. Geometric measure of quantum discord for a two-parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Inf. Process. 2013, 12, 1109–1124. [Google Scholar] [CrossRef]
- Zhang, F.L.; Chen, J.L. Irreducible multiqutrit correlations in Greenberger-Horne-Zeilinger type states. Phys. Rev. A 2011, 84, 062328. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Laurière, M.; Byrnes, T. Multipartite generalization of quantum Discord. Phys. Rev. Lett. 2020, 124, 110401. [Google Scholar] [CrossRef]
- Kanjilal, S.; Khan, A.; Jebarathinam, C.; Home, D. Remote state preparation using correlations beyond discord. Phys. Rev. A 2018, 98, 062320. [Google Scholar] [CrossRef]
- Carrijo, T.M.; Avelar, A.T. On the continuity of quantum correlation quantifiers. Quantum Inf. Process. 2020, 19, 214. [Google Scholar] [CrossRef]
- Zhu, X.N.; Fei, S.M.; Li-Jost, X.Q. Analytical expression of quantum discord for rank-2 two-qubit states. Quantum Inf. Process. 2018, 17, 234. [Google Scholar] [CrossRef]
- Ye, B.L.; Liu, Y.M.; Chen, J.L.; Liu, X.S.; Zhang, Z.J. Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 2013, 12, 2335. [Google Scholar] [CrossRef]
- Li, G.F.; Liu, Y.M.; Tang, H.J.; Yin, X.F.; Zhang, Z.J. Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 2015, 14, 559. [Google Scholar] [CrossRef]
- Xie, C.M.; Liu, Y.M.; Xing, H.; Chen, J.L.; Zhang, Z.J. Quantum correlation swapping. Quantum Inf. Process. 2015, 14, 653. [Google Scholar] [CrossRef]
- Xie, C.M.; Liu, Y.M.; Chen, J.L.; Zhang, Z.J. Study of quantum correlation swapping with relative entropy methods. Quantum Inf. Process. 2016, 15, 809. [Google Scholar] [CrossRef]
- Xie, C.M.; Liu, Y.M.; Chen, J.L.; Zhang, Z.J. Quantum correlation swapping in parallel and antiparallel two-qubit mixed states. Quantum Inf. Process. 2019, 18, 106. [Google Scholar] [CrossRef]
- Ye, B.L.; Liu, Y.M.; Xu, C.J.; Liu, X.S.; Zhang, Z.J. Quantum correlations in a family of two-qubit separable states. Commun. Theor. Phys. 2013, 60, 283. [Google Scholar] [CrossRef]
- Xie, C.M.; Zhang, Z.J.; Chen, J.L.; Yin, X.F. Analytic expression of quantum discord in Werner states under LQCC. Entropy 2020, 22, 147. [Google Scholar] [CrossRef]
- Xie, C.M.; Zhang, Z.J.; Yuan, H.; Chen, J.L.; Sun, J.; Yin, X.F. Quantum correlation swapping between Werner derivatives. Laser Phys. Lett. 2021, 18, 125203. [Google Scholar] [CrossRef]
- Xie, C.M.; Zhang, Z.J.; Chen, J.L.; Yin, X.F. Quantum correlation swapping between Werner and separable states. Laser Phys. Lett. 2021, 18, 035203. [Google Scholar] [CrossRef]
- Xie, C.M.; Wu, F.Y.; Zhang, Z.J.; Liang, J.W.; Yin, X.F. Increasing quantum correlations based on Measurement-induced disturbance via a swapping procedure with two-qubit mixed states. Entropy 2021, 23, 147. [Google Scholar] [CrossRef] [PubMed]
- Ghiu, I.; Grimaudo, R.; Mihaescu, T.; Isar, A.; Messina, A. Quantum correlation dynamics in controlled two-coupled-qubit system. Entropy 2020, 22, 785. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Liu, Y.M.; Li, G.F.; Liu, X.S.; Zhang, Z.J. Quantum correlations in Werner derivatives. Commun. Theor. Phys. 2013, 60, 40. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Zhang, Z.; Chen, J.; Yin, X. Quantum Correlation Swapping between Two Werner States Undergoing Local and Nonlocal Unitary Operations. Entropy 2022, 24, 1244. https://doi.org/10.3390/e24091244
Xie C, Zhang Z, Chen J, Yin X. Quantum Correlation Swapping between Two Werner States Undergoing Local and Nonlocal Unitary Operations. Entropy. 2022; 24(9):1244. https://doi.org/10.3390/e24091244
Chicago/Turabian StyleXie, Chuanmei, Zhanjun Zhang, Jianlan Chen, and Xiaofeng Yin. 2022. "Quantum Correlation Swapping between Two Werner States Undergoing Local and Nonlocal Unitary Operations" Entropy 24, no. 9: 1244. https://doi.org/10.3390/e24091244
APA StyleXie, C., Zhang, Z., Chen, J., & Yin, X. (2022). Quantum Correlation Swapping between Two Werner States Undergoing Local and Nonlocal Unitary Operations. Entropy, 24(9), 1244. https://doi.org/10.3390/e24091244