Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100−xWx (x = 5, 10, 15 and 20) Refractory High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase Characterization of (TiVCrZr)100−xWx RHEAs
3.2. Microstructure of (TiVCrZr)100−xWx RHEAs
3.3. Mechanical Properties of (TiVCrZr)100−xWx RHEAs
4. Discussion
4.1. Phase Structure
4.2. Specific Strength
5. Conclusions
- (1)
- (TiVCrZr)100−xWx RHEAs have the Laves, BCC and Ti-rich phases, where the Laves phase is the major phase, and the volume fraction of the BCC phase increases with increasing W content. Dendrite structures were observed. The EDS results show that W is enriched, and then gradually diffuses, and finally precipitates in the dendrite region, corresponding to the transformation from the gray region (Zr(Cr, V)2-type Laves phase) to bright region (Zr(Cr, V, W)2-type Laves phase) and the increased white region.
- (2)
- Empirical parameters and the calculated phase diagram (Thermo-Calc Software AB) are beneficial for understanding the mechanisms of phase formation and variation. The results indicate that the calculated phase type and variation are consistent with the experimental results. Moreover, the calculated phase diagram confirmed the substitution of W for Cr and V to some extent.
- (3)
- W addition significantly enhances the strength and hardness of (TiVCrZr)100−xWx RHEAs. The strength of the alloy system improved from 1574 MPa (W5) to 1894 MPa (W15), and the hardness improved from 588 HV to 694 HV. Generally, the higher specific strength benefits those alloys to be envisaged as structure materials. Compared with the selected RHEAs and Inconel 718, the specific strength of (TiVCrZr)100−xWxRHEAs exceed that of almost all W-containing RHEAs, and the highest specific strength was found to be 256.65 MPa·cm3·g−1 of W10 RHEA, which was just below that of the Mo0.5VNbTiCr1.5 and Mo0.5VNbTiCr2.0 W-free RHEAs. Moreover, the specific strength of (TiVCrZr)100−xWxRHEAs also exceed that of Inconel 718 (about 148 MPa·cm3·g−1), which is widely applied in the aerospace industry. The improvement of strength and hardness resulted from the strengthening effect of W on the Laves phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Zhang, W.R.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Qi, C.; Liu, J.Q.; Zhang, J.S.; Wu, Y.C. Recent Advances in W-Containing Refractory High-Entropy Alloys—An Overview. Entropy 2022, 24, 1553. [Google Scholar] [CrossRef] [PubMed]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Fazakas, É.; Zadorozhnyy, V.; Varga, L.K.; Inoue, A.; Louzguine-Luzgin, D.V.; Tian, F.Y.; Vitos, L. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 2014, 47, 131–138. [Google Scholar] [CrossRef]
- Han, Z.D.; Chen, N.; Zhao, S.F.; Fan, L.W.; Yang, G.N.; Shao, Y.; Yao, K.F. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 2017, 84, 153–157. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Z.L.; Xu, Z.Q.; Cheng, X.W. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J. Alloys Compd. 2019, 803, 778–785. [Google Scholar] [CrossRef]
- Xiang, C.; Fu, H.M.; Zhang, Z.M.; Han, E.-H.; Zhang, H.F.; Wang, J.Q.; Hu, G.D. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J. Alloys Compd. 2020, 818, 153352. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Juan, C.-C.; Tsai, M.-H.; Tsai, C.-W.; Lin, C.-M.; Wang, W.-R.; Yang, C.-C.; Chen, S.-K.; Lin, S.-J.; Yeh, J.-W. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 2015, 62, 76–83. [Google Scholar] [CrossRef]
- Eshed, E.; Larianovsky, N.; Kovalevsky, A.; Katz Demyanetz, A. Effect of Zr on the Microstructure of Second- and Third-Generation BCC HEAs. JOM 2018, 71, 673–682. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Tsai, M.-H. Three Strategies for the Design of Advanced High-Entropy Alloys. Entropy 2016, 18, 252. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.Q.; Zhang, Y.; Chen, X.; Fu, X.Q.; Chen, D.K.; Chen, S.J.; Gu, L.; Wei, F.; Bei, H.B.; Gao, Y.F.; et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227. [Google Scholar] [CrossRef]
- Tariq, N.H.; Naeem, M.; Hasan, B.A.; Akhter, J.I.; Siddique, M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 2013, 556, 79–85. [Google Scholar] [CrossRef]
- Park, S.; Park, C.; Na, Y.; Kim, H.-S.; Kang, N. Effects of (W, Cr) carbide on grain refinement and mechanical properties for CoCrFeMnNi high entropy alloys. J. Alloys Compd. 2019, 770, 222–228. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C.; Miracle, D.B. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 2013, 61, 1545–1557. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Miracle, D.B.; Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng. A 2013, 565, 51–62. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 2015, 31, 1184–1193. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, H.Z.; Huang, T.D.; Lu, Y.P.; Wang, T.M.; Li, T.J. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater. Des. 2016, 109, 539–546. [Google Scholar] [CrossRef]
- Niu, Z.Z.; Xu, J.; Wang, T.; Wang, N.R.; Han, Z.H.; Wang, Y. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys. Intermetallics 2019, 112, 106550. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, J.S.; Guan, S.; Li, T.; Liu, J.Q.; Wu, F.F.; Wu, Y.C. Microstructure and mechanical properties of WNbMoTaZrx (x = 0.1, 0.3, 0.5, 1.0) refractory high entropy alloys. Mater. Sci. Eng. A 2022, 835, 142701. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Fan, A.-C.; Wang, H.-A. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J. Alloys Compd. 2017, 695, 1479–1487. [Google Scholar] [CrossRef]
- Soni, V.; Senkov, O.N.; Couzinie, J.-P.; Zheng, Y.; Gwalani, B.; Banerjee, R. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia 2020, 9, 100569. [Google Scholar] [CrossRef]
- Fan, J.T.; Zhang, L.J.; Yu, P.F.; Zhang, M.D.; Li, G.; Liaw, P.K.; Liu, R.P. A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance. Scr. Mater. 2019, 159, 18–23. [Google Scholar] [CrossRef]
- Xiang, C.; Han, E.-H.; Zhang, Z.M.; Fu, H.M.; Wang, J.Q.; Zhang, H.F.; Hu, G.D. Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application. Intermetallics 2019, 104, 143–153. [Google Scholar] [CrossRef]
- Zhang, J.S.; Chen, S.H.; Liu, J.Q.; Qing, Z.H.; Wu, Y.C. Microstructure and Mechanical Properties of Novel High-Strength, Low-Activation Wx(TaVZr)100−x (x = 5, 10, 15, 20, 25) Refractory High Entropy Alloys. Entropy 2022, 24, 1342. [Google Scholar] [CrossRef]
- Yurchenko, N.Y.; Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134. [Google Scholar] [CrossRef]
- Riesterer, T.; Kofel, P.; Osterwalder, J.; Schlapbach, L. The electronic structure of Zr (V1−xCrx) 2 laves phase compounds and their hydrides studied by photoelectron spectroscopy. J. Less Common Met. 1984, 101, 221–228. [Google Scholar] [CrossRef]
- Wang, J.; Bai, S.X.; Tang, Y.; Li, S.; Liu, X.Y.; Jia, J.H.; Ye, Y.C.; Zhu, L.A. Effect of the valence electron concentration on the yield strength of Ti–Zr–Nb–V high-entropy alloys. J. Alloys Compd. 2021, 868, 159190. [Google Scholar] [CrossRef]
- Li, J.M.; Yang, X.; Zhu, R.L.; Zhang, Y. Corrosion and Serration Behaviors of TiZr0.5NbCr0.5VxMoy High Entropy Alloys in Aqueous Environments. Metals 2014, 4, 597–608. [Google Scholar] [CrossRef]
- Huang, T.-D.; Wu, S.-Y.; Jiang, H.; Lu, Y.-P.; Wang, T.-M.; Li, T.-J. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int. J. Miner. Met. Mater. 2020, 27, 1318–1325. [Google Scholar] [CrossRef]
- Lu, Y.P.; Jiang, H.; Guo, S.; Wang, T.M.; Cao, Z.Q.; Li, T.J. A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 2017, 91, 124–128. [Google Scholar] [CrossRef]
- Zhang, W.R.; Liaw, P.; Zhang, Y. A Novel Low-Activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) High-Entropy Alloys with Excellent Heat-Softening Resistance. Entropy 2018, 20, 951. [Google Scholar] [CrossRef]
- Chang, X.J.; Zeng, M.Q.; Liu, K.L.; Fu, L. Phase Engineering of High-Entropy Alloys. Adv. Mater. 2020, 32, e1907226. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, N.Y.; Stepanov, N.D.; Gridneva, A.O.; Mishunin, M.V.; Salishchev, G.A.; Zherebtsov, S.V. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. J. Alloys Compd. 2018, 757, 403–414. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Skibin, D.V.; Tikhonovsky, M.A.; Salishchev, G.A. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 2015, 652, 266–280. [Google Scholar] [CrossRef]
- Poletti, M.G.; Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014, 75, 297–306. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, N.; Stepanov, N.; Salishchev, G. Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 2016, 33, 17–22. [Google Scholar] [CrossRef]
- Guo, S.; Hu, Q.; Ng, C.; Liu, C.T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 2013, 41, 96–103. [Google Scholar] [CrossRef]
- Yang, G.Y.; Yang, P.W.; Yang, K.; Liu, N.; Jia, L.; Wang, J.; Tang, H.P. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. Int. J. Refract. Met. Hard Mater. 2019, 84, 105040. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yan, Q.Z.; Lang, S.T.; Wang, Y.J.; Ge, C.C. Preparation of pure tungsten via various rolling methods and their influence on macro-texture and mechanical properties. Mater. Des. 2017, 126, 1–11. [Google Scholar] [CrossRef]
- Wu, Y.C. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor. Acta Met. Sin. 2019, 55, 939–950. [Google Scholar] [CrossRef]
- Wu, Y.C. The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility. Acta Met. Sin. 2019, 55, 171–180. [Google Scholar] [CrossRef]
- Sun, Z.P.; Li, X.Z.; Wang, Z.M. Microstructure and mechanical properties of low activation Fe–Ti–Cr–V–W multi-principal element alloys. J. Nucl. Mater. 2020, 533, 152078. [Google Scholar] [CrossRef]
- Han, Z.D.; Luan, H.W.; Liu, X.; Chen, N.; Li, X.Y.; Shao, Y.; Yao, K.F. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 2018, 712, 380–385. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Gao, M.C.; Hawk, J.A.; Ma, S.G.; Zhou, H.F.; Zhang, Y. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng. A 2016, 674, 203–211. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Shen, Q.; Zhang, J.; Chen, B.; Luo, G.Q.; Zhang, L.M. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density. Int. J. Refract. Met. Hard Mater. 2018, 77, 8–11. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Shen, Q.; Zhang, J.; Zhang, Y.; Luo, G.Q.; Zhang, L.M. Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC. J. Alloys Compd. 2019, 777, 1168–1175. [Google Scholar] [CrossRef]
- Naser-Zoshki, H.; Kiani-Rashid, A.-R.; Vahdati-Khaki, J. Design of a low density refractory high entropy alloy in non-equiatomic W–Mo–Cr–Ti–Al system. Vacuum 2020, 181, 109614. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.Y.; Wei, Q.Q.; Xiao, Y.; Chen, P.G.; Luo, G.Q.; Shen, Q. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J. Alloys Compd. 2020, 827, 154301. [Google Scholar] [CrossRef]
- Liu, H.B.; Liu, L.; Xin, C.L. Effect of alloying elements on the structure and mechanical properties of NbMoTaWX (X = Cr, V, Ti, Zr, and Hf) refractory high-entropy alloys. AIP Adv. 2021, 11, 025044. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.H.; Wu, Z.W.; Zhang, Z.F.; Wu, Y.C. Development of high-strength WNbMoTaVZrx refractory high entropy alloys. J. Mater. Res. 2022, 37, 1664–1678. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, L.; Han, K.M.; Lu, Y.P.; Wang, T.M.; Cao, Z.Q.; Li, T.J. Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx High-Entropy Alloys. J. Mater. Eng. Perform. 2015, 24, 4594–4600. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, Y.P. Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy. J. Mater. Eng. Perform. 2017, 27, 109–115. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Tang, Y.C.; Luo, L.; Luo, L.S.; Su, Y.Q.; Guo, J.J.; Fu, H.Z. Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles. J. Alloys Compd. 2020, 843, 155997. [Google Scholar] [CrossRef]
- Soni, V.K.; Sanyal, S.; Sinha, S.K. Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys. Intermetallics 2021, 132, 107161. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, Y.P. Microstructure and Mechanical Properties of CoCrFeNi2Al1−xWx High Entropy Alloys. Arab. J. Sci. Eng. 2018, 44, 803–808. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 2011, 529, 311–320. [Google Scholar] [CrossRef]
- Wu, Y.D.; Cai, Y.H.; Chen, X.H.; Wang, T.; Si, J.J.; Wang, L.; Wang, Y.D.; Hui, X.D. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 2015, 83, 651–660. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. Jom 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Poulia, A.; Georgatis, E.; Mathiou, C.; Karantzalis, A.E. Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element. Mater. Chem. Phys. 2018, 210, 251–258. [Google Scholar] [CrossRef]
- Jia, Y.F.; Zhang, L.B.; Li, P.Y.; Ma, X.D.; Xu, L.; Wu, S.W.; Jia, Y.D.; Wang, G. Microstructure and Mechanical Properties of Nb–Ti–V–Zr Refractory Medium-Entropy Alloys. Front. Mater. 2020, 7, 172. [Google Scholar] [CrossRef]
- Qiao, D.-X.; Jiang, H.; Jiao, W.-N.; Lu, Y.-P.; Cao, Z.-Q.; Li, T.-J. A Novel Series of Refractory High-Entropy Alloys Ti2ZrHf0.5VNbx with High Specific Yield Strength and Good Ductility. Acta Met. Sin. 2019, 32, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, X.; Niu, H.; Yang, L.; Xu, M.; Yi, J. Effect of Cr Incorporation on the Mechanical Properties of HfMoTiZrCr, HfMoNbZrCr, and HfMoNbTiCr Refractory High-Entropy Alloys. Met. Mater. Int. 2022, 28, 2413–2421. [Google Scholar] [CrossRef]
- Yi, J.J.; Yang, L.; Wang, L.; Xu, M.Q. Lightweight, Refractory High-Entropy Alloy, CrNbTa0.25TiZr, with High Yield Strength. Met. Mater. Int. 2021, 28, 448–455. [Google Scholar] [CrossRef]
RHEAs | Region | Content (at.%) | ||||
---|---|---|---|---|---|---|
Ti | V | Cr | Zr | W | ||
Bright | 9.54 ± 0.46 | 19.92 ± 0.97 | 26.36 ± 0.86 | 29.66 ± 0.47 | 14.52 ± 1.27 | |
W5 | Gray | 14.60 ± 0.80 | 24.78 ± 0.44 | 30.04 ± 0.59 | 26.82 ± 0.18 | 3.82 ± 0.35 |
Dark | 55.20 ± 1.56 | 18.55 ± 1.06 | 5.25 ± 0.78 | 20.6 ± 0.42 | 0.45 ± 0.07 | |
White | 14.08 ± 0.15 | 23.78 ± 0.46 | 10.50 ± 0.70 | 0.8 ± 0.47 | 50.85 ± 1.06 | |
W10 | Bright | 10.13 ± 0.57 | 19.4 ± 0.83 | 24.6 ± 0.57 | 29.9 ± 0.29 | 16.00 ± 0.43 |
Gray | 17.1 ± 17.1 | 24.3 ± 0.85 | 29.5 ± 0.99 | 27.3 ± 0.85 | 1.8 ± 0.28 | |
Dark | 55.20 ± 0.80 | 15.23 ± 0.68 | 4.93 ± 0.55 | 23.87 ± 2.10 | 0.67 ± 0.15 | |
White | 12.93 ± 0.68 | 21.37 ± 0.42 | 10.2 ± 0.36 | 1.77 ± 0.74 | 53.73 ± 0.90 | |
W15 | Bright | 7.36 + 0.47 | 17.03 + 0.68 | 23.57 + 0.51 | 30.9 + 0.36 | 21.17 + 1.49 |
Dark | 54.92 ± 0.67 | 15.08 ± 0.87 | 5.33 ± 0.49 | 24.05 ± 1.06 | 0.6 ± 0.14 | |
White | 11.03 ± 0.57 | 15.23 ± 0.96 | 7.13 ± 0.51 | 1.43 ± 0.55 | 65.2 ± 0.75 | |
W20 | Bright | 9.65 + 1.77 | 18.05 + 1.20 | 24.25 + 0.35 | 30.2 + 0.14 | 17.75 + 2.47 |
Dark | 55.68 ± 1.50 | 14.84 ± 1.91 | 5.38 ± 0.92 | 23.00 ± 3.76 | 1.1 ± 0.42 |
Alloy | σb (MPa) | εf (%) | HV (kgf/mm2) |
---|---|---|---|
W5 | 1574 ± 56.9 | 5.94 ± 0.5 | 588 ± 10 |
W10 | 1867 ± 52.5 | 6.68 ± 0.9 | 639 ± 23 |
W15 | 1894 ± 51.6 | 7.42 ± 0.6 | 676 ± 29 |
W20 | 1754 ± 34.2 | 6.47 ± 0.6 | 694 ± 20 |
Alloy | σb (MPa) | HV (kgf/mm2) |
---|---|---|
As-prepared (W10) | 1867 ± 52.5 | 639 ± 23 |
Annealed (W10) | 1930 ± 45 | 647 ± 13 |
Element | Ti | V | Cr | Zr | W |
---|---|---|---|---|---|
r (Å) | 1.462 | 1.316 | 1.249 | 1.603 | 1.367 |
χAllen | 1.38 | 1.53 | 1.65 | 1.32 | 1.47 |
VEC | 4 | 5 | 6 | 4 | 6 |
a (Å) | 3.31 | 3.03 | 2.91 | 3.58 | 3.17 |
Tm (K) | 1941 | 2183 | 2180 | 2128 | 3695 |
ρ (g/cm3) | 4.51 | 6.11 | 7.14 | 6.51 | 19.25 |
Alloy | ΔSmix [J/(K·mol)] | ΔHmix (kJ/mol) | δ (%) | VEC | Ω | Tm (K) | ΔχAllen (%) |
---|---|---|---|---|---|---|---|
W5 | 12.600 | −6.804 | 9.497 | 4.813 | 4.05 | 2187.4 | 8.556 |
W10 | 13.076 | −6.817 | 9.277 | 4.875 | 4.35 | 2266.7 | 8.327 |
W15 | 13.312 | −6.789 | 9.048 | 4.938 | 4.60 | 2346.1 | 8.093 |
W20 | 13.382 | −6.720 | 8.810 | 5.000 | 4.83 | 2425.4 | 7.851 |
Alloys | W5 | W10 | W15 | W20 |
---|---|---|---|---|
The specific strength (MPa·cm3·g−1) | 237.03 | 256.65 | 239.29 | 205.10 |
ρ (g/cm3) | 6.64 | 7.28 | 7.91 | 8.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xu, K.; Zhang, J.; Zhang, J. Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100−xWx (x = 5, 10, 15 and 20) Refractory High-Entropy Alloys. Entropy 2023, 25, 100. https://doi.org/10.3390/e25010100
Wang H, Xu K, Zhang J, Zhang J. Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100−xWx (x = 5, 10, 15 and 20) Refractory High-Entropy Alloys. Entropy. 2023; 25(1):100. https://doi.org/10.3390/e25010100
Chicago/Turabian StyleWang, Haitao, Kuang Xu, Juchen Zhang, and Junsheng Zhang. 2023. "Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100−xWx (x = 5, 10, 15 and 20) Refractory High-Entropy Alloys" Entropy 25, no. 1: 100. https://doi.org/10.3390/e25010100
APA StyleWang, H., Xu, K., Zhang, J., & Zhang, J. (2023). Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100−xWx (x = 5, 10, 15 and 20) Refractory High-Entropy Alloys. Entropy, 25(1), 100. https://doi.org/10.3390/e25010100