Entropy, Graph Homomorphisms, and Dissociation Sets
Abstract
:1. Introduction
2. Entropy
3. Proofs of Theorems 4 and 5
4. Further Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahn, J. An entropy approach to the hard-core model on bipartite graphs. Comb. Probab. Comput. 2001, 10, 219–237. [Google Scholar] [CrossRef]
- Zhao, Y. The number of independent sets in a regular graph. Comb. Probab. Comput. 2010, 19, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Sah, A.; Sawhney, M.; Stoner, D.; Zhao, Y. The number of independent sets in an irregular graph. J. Comb. Theory Ser. B 2019, 138, 172–195. [Google Scholar] [CrossRef] [Green Version]
- Sason, I. A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets in Bipartite Graphs. Entropy 2021, 23, 270. [Google Scholar] [CrossRef] [PubMed]
- Mohr, E.; Rautenbach, D. On the maximum number of maximum independent sets in connected graphs. J. Graph Theory 2021, 96, 510–521. [Google Scholar] [CrossRef]
- Moon, J.W.; Moser, L. On cliques in graphs. Isr. J. Math. 1965, 3, 23–28. [Google Scholar] [CrossRef]
- Sagan, B.E.; Vatter, V.R. Maximal and maximum independent sets in graphs with at most r cycles. J. Graph Theory 2006, 53, 283–314. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.; Jenssen, M.; Perkins, W.; Roberts, B. Independent sets, matchings, and occupancy fractions. J. Lond. Math. Soc. 2017, 96, 47–66. [Google Scholar] [CrossRef]
- Alvarado, J.D.; Dantas, S.; Mohr, E.; Rautenbach, D. On the maximum number of minimum dominating sets in forests. Discrete Math. 2019, 342, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Zhang, Z.; Shi, Y. The maximum number of maximum dissociation sets in trees. J. Graph Theory 2021, 96, 472–489. [Google Scholar] [CrossRef]
- Galvin, D.; Tetali, P. On weighted graph homomorphisms. Discrete Math. Theor. Comput. Sci. 2004, 63, 97–104. [Google Scholar]
- Zhao, Y. Independent Sets and Graph Homomorphisms. Amer. Math. Monthly 2017, 124, 827–843. [Google Scholar] [CrossRef] [Green Version]
- Galvin, D. Bounding the partition function of spin-systems. Electron. J. Combin. 2006, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Yannakakis, M. Node-deletion problems on bipartite graphs. SIAM J. Comput. 1981, 10, 310–327. [Google Scholar] [CrossRef]
- Orlovich, Y.; Dolgui, A.; Finke, G.; Gordon, V.; Werner, F. The complexity of dissociation set problems in graphs. Discrete Appl. Math. 2011, 159, 1352–1366. [Google Scholar] [CrossRef] [Green Version]
- Galvin, D. Three tutorial lectures on entropy and counting. In Proceedings of the 1st Lake Michigan Workshop on Combinatorics and Graph Theory, Kalamazoo, MI, USA, 15–16 March 2014. [Google Scholar]
- Alon, N. Independent sets in regular graphs and sum-free subsets of finite groups. Isr. J. Math. 1991, 73, 247–256. [Google Scholar] [CrossRef]
- Samotij, W. Counting independent sets in graphs. Eur. J. Comb. 2015, 48, 5–18. [Google Scholar] [CrossRef]
- Acharya, H.B.; Choi, T.; Bazzi, R.A.; Gouda, M.G. The k-observer problem in computer networks. Netw. Sci. 2012, 1, 15–22. [Google Scholar] [CrossRef]
- Brešar, B.; Kardoš, F.; Katrenič, J.; Semanišin, G. Minimum k-path vertex cover. Discrete Appl. Math. 2011, 159, 1189–1195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Tu, J.; Lang, R. Entropy, Graph Homomorphisms, and Dissociation Sets. Entropy 2023, 25, 163. https://doi.org/10.3390/e25010163
Wang Z, Tu J, Lang R. Entropy, Graph Homomorphisms, and Dissociation Sets. Entropy. 2023; 25(1):163. https://doi.org/10.3390/e25010163
Chicago/Turabian StyleWang, Ziyuan, Jianhua Tu, and Rongling Lang. 2023. "Entropy, Graph Homomorphisms, and Dissociation Sets" Entropy 25, no. 1: 163. https://doi.org/10.3390/e25010163
APA StyleWang, Z., Tu, J., & Lang, R. (2023). Entropy, Graph Homomorphisms, and Dissociation Sets. Entropy, 25(1), 163. https://doi.org/10.3390/e25010163