Combining Fractional Derivatives and Machine Learning: A Review
Abstract
:1. Introduction
2. Methodology
|
|
|
- We excluded articles primarily targeting and/or only targeting neural networks.This was done because there already exists an excellent review of neural networks and fractional calculus [5]. Nonetheless, we will peripherally mention neural network applications or feature articles that include neural networks along with other machine learning algorithms.
- We excluded articles dealing with control problems.This criterion was employed to keep this review focused, as including control problems would have unnecessarily blown up the discussed methodology and made it harder to identify key takeaways for hybrid applications of fractional calculus and machine learning.
- We discarded everything related to grey models.Grey models do not coincide with the classic supervised learning approaches we are looking for in this review.
- We excluded publications that dealt with fractional integrals rather than with fractional derivatives.
- We excluded publications that featured fractional complexity measures, e.g., fractional entropy measures.Nonetheless, we briefly mention them in our discussion if they provide valuable insights into hybrid applications.
- We excluded unsupervised and reinforcement learning approaches.Thus, we are only dealing with supervised learning.
3. Fractional Derivatives
- The Grünwald–Letnikov fractional derivative
- The Caputo Fractional Derivative
- The Riemann–Liouville fractional derivative
- The Riesz Fractional Derivative
- denotes the order of the fractional derivative. Whereas . Thus, n defines the integer proximity of α. denotes the real part of a complex number. Furthermore, as defined here, alpha can be complex. However, every single reviewed article (see Appendix A for the summary table) featuring a combined application of fractional derivatives and machine learning uses a real or at least rational value for α.
- and n as .
- is a finite interval in and . Furthermore, .
- ζ is an auxiliary variable used for integration.
- is the gamma function [15].
- denotes the floor function, i.e.,
- The previously mentioned "memory" is induced by the summation over k in the case of the Grünwald–Letnikov derivative and by the integration over ζ for the other mentioned derivatives.
4. Supervised Machine Learning
5. Results: Combined Approaches of Fractional Derivatives and Machine Learning
5.1. Preprocessing
5.1.1. Spectroscopy
5.1.2. Biomedical Applications
5.1.3. Engineering
5.2. Machine Learning and Fractional Dynamics
5.3. Optimization
5.3.1. Fractional Gradient-Based Optimization
5.3.2. Fractional Gradient-Free Optimization
6. Discussion
6.1. Preprocessing
6.2. Machine Learning and Fractional Dynamics
6.3. Optimization
6.4. Bringing It All Together
6.4.1. Optimization
6.4.2. Variability
6.4.3. Nonlocal Models
6.4.4. Renormalization Group
- How can we characterize complexity?
- What method should be used to analyze complexity to better understand real-world phenomena?
6.5. Problems
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Summary Table
Publication | Employed Fractional Derivative | Employed Machine Learning Algorithms | Research Area | Category | Comment |
[22] | Grünwald–Letnikov | Random Forest, PLSR | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Organic Matter Content |
[24] | Grünwald–Letnikov | PLSR | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Nitrogen Concentration |
[31] | Grünwald–Letnikov | Random Forest, PLSR | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Soil Salinity |
[28] | Grünwald–Letnikov | Random Forest | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Lead and Zinc Concentration |
[23] | Grünwald–Letnikov | Memory Based Learning, PLSR, Random Forest | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Soil Organic Matter |
[26] | Grünwald–Letnikov | SVM | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Total Nitrogen Content |
[27] | Grünwald–Letnikov | SVM, Random Forest PLSR, ELM | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Leaf Chlorophyll Concentration |
[32] | Grünwald–Letnikov | ELM | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Soil Salt, Water-Soluble Ions |
[25] | Grünwald–Letnikov | SVM, ELM CNN, PLSR | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Nitrogen Content |
[29] | Grünwald–Letnikov | PLSR, GRNN | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Soil Heavy Metal Estimation |
[30] | Grünwald–Letnikov | SVM, Ridge Regression, PLSR, Random ForestXGBoost, ELM | Agriculture | Preprocessing | Vis-NIRSpectroscopy, Soil Heavy Metal Estimation |
[31] | Grünwald–Letnikov | PLSR | Agriculture | Preprocessing | HyperspectralSpectroscopy, Salt Content |
[41] | Grünwald–Letnikov | PLSR | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Clay Content |
[33] | Grünwald–Letnikov | PLSR | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Organic Matter |
[35] | Grünwald–Letnikov | SVM | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Salt Content |
[34] | Grünwald–Letnikov | Random Forest | Agriculture | Preprocessing | HyperspectralSpectroscopy, Top Soil Organic Carbon |
[37] | Grünwald–Letnikov | Random Forest, SVM | Agriculture | Preprocessing | HyperspectralSpectroscopy, Canopy Nitrogen Content |
[36] | Grünwald–Letnikov | PLSR | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Total Salt Content |
[42] | Grünwald–Letnikov | Random Forest, XGBoost | Environmental | Preprocessing | HyperspectralSpectroscopy, Total Nitrogen in Water |
[39] | Grünwald–Letnikov | XGBoost | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Moisture Content |
[38] | Grünwald–Letnikov | SVM, KNN | Agriculture | Preprocessing | HyperspectralSpectroscopy, Leaf Photosynthetic Pigment Content |
[43] | Grünwald–Letnikov | Random Forest | Environmental | Preprocessing | HyperspectralSpectroscopy, Total Suspended Matter in Water |
[40] | Grünwald–Letnikov | XGBoost, LightGBM, Random Forest, Extremely Randomized Trees, Decision Trees, Ridge Regression | Agriculture | Preprocessing | HyperspectralSpectroscopy, Soil Electrical Conductivity |
[44] | Fractional Order Modeling | SVM | Biomedical Application | Preprocessing | EEG Signal Analysis, Seizure (Ictal) Detection |
[45] | Fractional Order Model=ling | SVM | Biomedical Application | Preprocessing | EEG Signal Analysis, Seizure(Ictal) Detection |
[47] | Fractional Order Modeling | KNN | Biomedical Application | Preprocessing | ECG Signal Analysis, Arrhythmia Detection |
[48] | Fractional Order Modeling | KNN | Biomedical Application | Preprocessing | ECG Signal Analysis, Arrhythmia Detection |
[51] | Discrete Fractional Mask | SVM, RF, Simple Cart, J48 | Biomedical Application | Preprocessing | CT Image Signal Analysis, Liver Tumor Detection |
[49] | Fractional Order Modeling | KNN | Biomedical Application | Preprocessing | Respiratory Impedance Analysis, Disease Detection |
[50] | Grünwald– Letnikov | RN | Biomedical Application | Preprocessing | Handwriting Analysis, Parkinson Disease Detection |
[46] | Grünwald– Letnikov | KNN | Biomedical Application | Preprocessing | EEG Signal Analysis, Abnormality Detection |
[106] | Discrete Fractional Derivative | RF, XGBoost | Biomedical Application | Preprocessing | Hemoglobin Analysis, Diabetes Detection |
[107] | Discrete Fractional Derivative | SVM, Naive Bayes, Random Forest AdaBoost, Bagging | Biomedical Application | Preprocessing | Glucose and Insulin Analysis, Diabetes Detection |
[52] | Grünwald– Letnikov | ELM, MLSR | Engineering | Preprocessing | Solar Panel Analysis, Defective Solder Joint Detection |
[53] | Reisz | ELM, MLSR | Engineering | Preprocessing | Photovoltaic Panel Temperature Monitoring, Peak Detection |
[54] | Riemann–Liouville | RF | Engineering | Preprocessing | Activity Recognition of Construction Equipment |
[55] | Fractional Differential Equations | Gaussian Process Regression | Physics | Fractional Dynamics | Modeling of Fractional Dynamics from Data |
[56] | Fractional Differential Equations, Caputo Derivative | K-Means, Linear Regression, Sparse Regression | Physics | Fractional Dynamics | Modeling Damping from Data |
[57] | Fractional Differential Equations, Caputo Derivative | SVM | Applied Mathematics | Fractional Dynamics | Solving Fractional Differential Equations |
[58] | Fractional Differential Equations, Caputo Derivative | Ridge Regression | Applied Mathematics | Fractional Dynamics | Modeling Boundaries of Fractional Differential Equations |
[59] | Fractional Differential Equations, Caputo Derivative | Gaussian Process Regression, RNN | Finance & Economy | Fractional Dynamics | Modeling a Fractional Order Financial System |
[60] | Fractional Differential Equations, Grünwald–Letnikov Derivative | RF | Engineering | Fractional Dynamics | Modeling and Analyzing the Fractional Behavior of Batteries |
[61] | Caputo | Ridge Regression | Regression in General | Optimization | Fractional Gradient Descent on Testing Environment |
[63] | Caputo | Logistic Regression | Regression in General | Optimization | Fractional Gradient Descent on Testing Environment |
[64] | Caputo | SVM | Classification in General | Optimization | Fractional Gradient Descent Rainfall Data |
[65] | Caputo | SVM | Classification in General | Optimization | Fractional Gradient Descent Iris and Rainfall Data |
[66] | Caputo | Fractional Linear Regression | Regression Analysis in Finance | Optimization | Multi Linear Regression with Fractional Derivatives Applied to the Romanian GDP |
[67] | Caputo | Fractional Linear Regression, Fractional Quadratic Regression | Regression Analysis in General | Optimization | Multi Regression with Fractional Derivatives |
[69] | Grünwald–Letnikov | XGBoost | Biomedical Application | Optimization | Classification of Heart Diseases via XGBoost and fractional PSO |
[70] | Grünwald–Letnikov | SVM, K-Means | Biomedical Application | Optimization | Optimizing K-Means and SVM via Improved Fractional PSO |
[73] | Grünwald–Letnikov | Random Forest | Spectroscopy | Optimization, Preprocessing | Optimizing a RF Classification for Spectral Bands |
[74] | Grünwald–Letnikov | SVM | Spectroscopy | Optimization, Preprocessing | Multilevel Image Segmentation for SVM Classification |
[75] | Grünwald–Letnikov | ELM, SVM, Relief, | Regression in General | Optimization, Preprocessing | Optimizing Features for a range of Algorithms and Datasets using FODPSO |
[76] | Grünwald–Letnikov | Decision Trees | Biomedical Application | Optimization, Preprocessing | Optimizing Liver cancer detection from CT scans using Decision Trees and FODPSO |
[77] | Grünwald–Letnikov | SVM, RF | Biomedical Application | Optimization, Preprocessing | Optimizing Stroke Detection from MRI Brain Scans Using Random Forest and FODPSO |
[78] | Grünwald–Letnikov | SVM, RF | Biomedical Application | Optimization, Preprocessing | Optimizing Stroke Detection from MRI Brain Scans Using Random Forest and FODPSO |
[79] | Grünwald–Letnikov | Naive Bayes Hoeffding Tree Classifier | Biomedical Application | Optimization, Preprocessing | Optimizing Foot Ulcer Detection from MRI Brain Scans Using Random Forest and FODPSO |
[80] | Grünwald–Letnikov | Fuzzy C-Means | Biomedical Application | Optimization, Preprocessing | Optimizing brain tumor detection from Brain MRI Scans Using Fuzzy C-Means and FODPSO |
[81] | Grünwald–Letnikov | Decision Trees | Water Management | Optimization | Predicting Water Quality Using Decision Trees and Fractional Artificial Bee Colony Optimization |
[82] | Grünwald–Letnikov | Nonlinear Regression | Finance & Economy | Optimization | Predicting Non-Performing loans Using FOABCO and Nonlinear Regression |
References
- West, B.J. Tomorrow’s Science; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial neural networks: A practical review of applications involving fractional calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, J.; Naseem, I.; Moinuddin, M. A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks. Circuits Syst. Signal Process. 2018, 37, 593–612. [Google Scholar] [CrossRef]
- Aslipour, Z.; Yazdizadeh, A. Identification of wind turbine using fractional order dynamic neural network and optimization algorithm. Int. J. Eng. 2020, 33, 277–284. [Google Scholar]
- Unity Technologies. AI and Machine Learning, Explained; Unity Technologies: San Francisco, CA, USA, 2022. [Google Scholar]
- Google Developers. Machine Learning Glossary; 2022. [Google Scholar]
- Wikipedia. Fractional Calculus—Wikipedia, The Free Encyclopedia. 2022. Available online: http://en.wikipedia.org/w/index.php?title=Fractional%20calculus&oldid=1124332647 (accessed on 6 December 2022).
- de Oliveira, E.C.; Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Aslan, İ. An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation. Math. Methods Appl. Sci. 2015, 38, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Sagayaraj, M.; Selvam, A.G. Discrete Fractional Calculus: Definitions and Applications. Int. J. Pure Eng. Math. 2014, 2, 93–102. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Artin, E. The Gamma Function, dover ed.; Dover Books on Mathematics; Dover Publications, Inc.: Mineola, NY, USA, 2015. [Google Scholar]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Bzdok, D.; Krzywinski, M.; Altman, N. Machine learning: Supervised methods. Nat. Methods 2018, 15, 5–6. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Brownlee, J. Basics for Linear Algebra for Machine Learning—Discover the Mathematical Language of Data in Python, 1.1 ed.; ZSCC: NoCitationData[s0]; Jason Brownlee, Machine Learning Mastery: Melbourne, Australia, 2018. [Google Scholar]
- Brownlee, J. Master Machine Learning Algorithms, ebook ed.; Machine Learning Mastery: Melbourne, Australia, 2016. [Google Scholar]
- Brownlee, J. Machine Learning Mastery with Python, 1st ed.; Machine Learning Mastery: Melbourne, Australia, 2016. [Google Scholar]
- Wang, J.; Tiyip, T.; Ding, J.; Zhang, D.; Liu, W.; Wang, F. Quantitative Estimation of Organic Matter Content in Arid Soil Using Vis-NIR Spectroscopy Preprocessed by Fractional Derivative. J. Spectrosc. 2017, 2017, 1375158. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Chen, S.; Liu, Y.; Zhang, Y.; Yu, L.; Chen, Y.; Liu, Y.; Cheng, H.; Liu, Y. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena 2019, 174, 104–116. [Google Scholar] [CrossRef]
- Chen, K.; Li, C.; Tang, R. Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra. Ind. Crop. Prod. 2017, 108, 831–839. [Google Scholar] [CrossRef]
- Hu, W.; Hu, W.; Tang, R.; Li, C.; Zhou, T.; Chen, J.; Chen, K.; Chen, K. Fractional order modeling and recognition of nitrogen content level of rubber tree foliage. J. Near Infrared Spectrosc. 2021, 29, 42–52. [Google Scholar] [CrossRef]
- Abulaiti, Y.; Sawut, M.; Maimaitiaili, B.; Chunyue, M. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton. Comput. Electron. Agric. 2020, 171, 105275. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Newcomb, M.; Shakoor, N.; Mockler, T.C. Quantifying Leaf Chlorophyll Concentration of Sorghum from Hyperspectral Data Using Derivative Calculus and Machine Learning. Remote Sens. 2020, 12, 2082. [Google Scholar] [CrossRef]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, Y.; Zhang, Y.; Liu, Y.; Zhou, M.; Yu, L.; Liu, Y.; Liu, Y. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Sci. Total Environ. 2019, 651, 1969–1982. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Ren, L.; Han, C.; Lv, D.; Zhang, Y.; Ai, F. Estimation of Heavy Metals in Agricultural Soils Using Vis-NIR Spectroscopy with Fractional-Order Derivative and Generalized Regression Neural Network. Remote Sens. 2021, 13, 2718. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.; Tan, K.; Wang, X.; Chen, Y.; Ding, J. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Sci. Total Environ. 2022, 813, 151882. [Google Scholar] [CrossRef]
- Zhang, D.; Tiyip, T.; Ding, J.; Zhang, F.; Nurmemet, I.; Kelimu, A.; Wang, J. Quantitative Estimating Salt Content of Saline Soil Using Laboratory Hyperspectral Data Treated by Fractional Derivative. J. Spectrosc. 2016, 2016, 1081674. [Google Scholar] [CrossRef]
- Lao, C.; Chen, J.; Zhang, Z.; Chen, Y.; Ma, Y.; Chen, H.; Gu, X.; Ning, J.; Jin, J.; Li, X. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Comput. Electron. Agric. 2021, 182, 106031. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring Appropriate Preprocessing Techniques for Hyperspectral Soil Organic Matter Content Estimation in Black Soil Area. Remote Sens. 2020, 12, 3765. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, F.; weng Chan, N.; Liu, S.; Deng, L. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China—ScienceDirect. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Tian, A.; Zhao, J.; Tang, B.; Zhu, D.; Fu, C.; Xiong, H. Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations. Remote Sens. 2021, 13, 4283. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, X.; Xiong, J.; Yu, R.; Liu, T.; Jiang, Y.; Yang, G. Estimation of Nitrogen Content on Apple Tree Canopy through Red-Edge Parameters from Fractional-Order Differential Operators using Hyperspectral Reflectance. J. Indian Soc. Remote Sens. 2021, 49, 377–392. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, G.; Xu, W.; Feng, H.; Han, S.; Liu, M.; Zhao, F.; Zhu, Y.; Zhao, Y.; Wu, B.; et al. Improving the Estimation of Apple Leaf Photosynthetic Pigment Content Using Fractional Derivatives and Machine Learning. Agronomy 2022, 12, 1497. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, J.; He, W.; Hu, Y.; Zeng, R.; Zamanian, K.; Jia, K.; Zhao, X. Combination of Hyperspectral and Machine Learning to Invert Soil Electrical Conductivity. Remote Sens. 2022, 14, 2602. [Google Scholar] [CrossRef]
- Wang, J.; Tiyip, T.; Ding, J.; Zhang, D.; Liu, W.; Wang, F.; Tashpolat, N. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative. PLoS ONE 2017, 12, e0184836. [Google Scholar] [CrossRef]
- Liu, J.; Ding, J.; Ge, X.; Wang, J. Evaluation of Total Nitrogen in Water via Airborne Hyperspectral Data: Potential of Fractional Order Discretization Algorithm and Discrete Wavelet Transform Analysis. Remote Sens. 2021, 13, 4643. [Google Scholar] [CrossRef]
- Wang, X.; Song, K.; Liu, G.; Wen, Z.; Shang, Y.; Du, J. Development of total suspended matter prediction in waters using fractional-order derivative spectra. J. Environ. Manag. 2022, 302, 113958. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Pachori, R.B.; Vijesh, A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 2014, 9, 1–5. [Google Scholar] [CrossRef]
- Aaruni, V.C.; Harsha, A.; Joseph, L.A. Classification of EEG signals using fractional calculus and wavelet support vector machine. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, India, 19–21 February 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Dhar, P.; Malakar, P.; Ghosh, D.; Roy, P.; Das, S. Fractional Linear Prediction Technique for EEG signals classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 261–265. [Google Scholar] [CrossRef]
- Assadi, I.; Charef, A.; Belgacem, N.; Nait-Ali, A.; Bensouici, T. QRS complex based human identification. In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 248–252. [Google Scholar] [CrossRef]
- Assadi, I.; Charef, A.; Bensouici, T.; Belgacem, N. Arrhythmias discrimination based on fractional order system and KNN classifier. In Proceedings of the 2nd IET International Conference on Intelligent Signal Processing 2015 (ISP), London, UK, 1–2 December 2015; p. 6. [Google Scholar] [CrossRef]
- Assadi, I.; Charef, A.; Copot, D.; De Keyser, R.; Bensouici, T.; Ionescu, C. Evaluation of respiratory properties by means of fractional order models. Biomed. Signal Process. Control 2017, 34, 206–213. [Google Scholar] [CrossRef]
- Mucha, J.; Mekyska, J.; Faundez-Zanuy, M.; Lopez-De-Ipina, K.; Zvoncak, V.; Galaz, Z.; Kiska, T.; Smekal, Z.; Brabenec, L.; Rektorova, I. Advanced Parkinson’s Disease Dysgraphia Analysis Based on Fractional Derivatives of Online Handwriting. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ghatwary, N.; Ahmed, A.; Jalab, H. Liver CT enhancement using Fractional Differentiation and Integration. In Proceedings of the World Congress on Engineering 2016 (WCE 2016), London, UK, 29 June–1 July 2016. [Google Scholar]
- Liu, H.; Zhang, C.; Huang, D. Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection. J. Electr. Comput. Eng. 2017, 2017, 7406568. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Nandini, P.; Rakshit, S.; Rawat, P.; Narayanamoorthi, R.; Kumar, R.; Senthil, R. Fiber Bragg grating sensor-based temperature monitoring of solar photovoltaic panels using machine learning algorithms. Opt. Fiber Technol. 2022, 69, 102831. [Google Scholar] [CrossRef]
- Langroodi, A.K.; Vahdatikhaki, F.; Doree, A. Activity recognition of construction equipment using fractional random forest. Autom. Constr. 2021, 122, 103465. [Google Scholar] [CrossRef]
- Gulian, M.; Raissi, M.; Perdikaris, P.; Karniadakis, G. Machine Learning of Space-Fractional Differential Equations. SIAM J. Sci. Comput. 2019. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wang, L.; Fukuda, I.; Ikago, K. Data-driven modeling of general damping systems by k-means clustering and two-stage regression. Mech. Syst. Signal Process. 2022, 167, 108572. [Google Scholar] [CrossRef]
- Parand, K.; Aghaei, A.A.; Jani, M.; Ghodsi, A. Parallel LS-SVM for the numerical simulation of fractional Volterra’s population model. Alex. Eng. J. 2021, 60, 5637–5647. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, Q.; Tang, S. Numerical boundary treatment for shock propagation in the fractional KdV-Burgers equation. Comput. Mech. 2022, 69, 201–212. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Alassafi, M.O.; Alsaadi, F.E.; Jahanshahi, H.; Bekiros, S. Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system. Chaos Solitons Fractals 2022, 154, 111590. [Google Scholar] [CrossRef]
- Yang, R.; Xiong, R.; He, H.; Chen, Z. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application. J. Clean. Prod. 2018, 187, 950–959. [Google Scholar] [CrossRef]
- Huang, F.; Li, D.; Xu, J.; Wu, Y.; Xing, Y.; Yang, Z. Ridge Regression Based on Gradient Descent Method with Memory Dependent Derivative. In Proceedings of the 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 16–18 October 2020; pp. 463–467. [Google Scholar] [CrossRef]
- Li, D.; Zhu, D. An affine scaling interior trust-region method combining with nonmonotone line search filter technique for linear inequality constrained minimization. Int. J. Comput. Math. 2018, 95, 1494–1526. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Xu, X.; Jia, Q.; Yang, Z.; Nai, W.; Sun, Y. Logistic Regression with Variable Fractional Gradient Descent Method. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 1925–1928. [Google Scholar] [CrossRef]
- Hapsari, D.P.; Utoyo, I.; Purnami, S.W. Fractional Gradient Descent Optimizer for Linear Classifier Support Vector Machine. In Proceedings of the 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 3–4 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Hapsari, D.P.; Utoyo, I.; Purnami, S.W. Support Vector Machine optimization with fractional gradient descent for data classification. J. Appl. Sci. Manag. Eng. Technol. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Badík, A.; Fečkan, M. Applying fractional calculus to analyze final consumption and gross investment influence on GDP. J. Appl. Math. Stat. Inform. 2021, 17, 65–72. [Google Scholar] [CrossRef]
- Awadalla, M.; Noupoue, Y.Y.Y.; Tandogdu, Y.; Abuasbeh, K. Regression Coefficient Derivation via Fractional Calculus Framework. J. Math. 2022, 2022, 1144296. [Google Scholar] [CrossRef]
- Couceiro, M.; Ghamisi, P. Fractional Order Darwinian Particle Swarm Optimization; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef] [Green Version]
- Chou, F.I.; Huang, T.H.; Yang, P.Y.; Lin, C.H.; Lin, T.C.; Ho, W.H.; Chou, J.H. Controllability of Fractional-Order Particle Swarm Optimizer and Its Application in the Classification of Heart Disease. Appl. Sci. 2021, 11, 11517. [Google Scholar] [CrossRef]
- Li, J.; Zhao, C. Improvement and Application of Fractional Particle Swarm Optimization Algorithm. Math. Probl. Eng. 2022, 2022, 5885235. [Google Scholar] [CrossRef]
- Tillett, J.; Rao, T.; Sahin, F.; Rao, R. Darwinian Particle Swarm Optimization. In Proceedings of the Indian International Conference on Artificial Intelligence, Pune, India, 20–22 December 2005; pp. 1474–1487. [Google Scholar]
- Couceiro, M.S.; Rocha, R.P.; Ferreira, N.M.F.; Machado, J.A.T. Introducing the fractional-order Darwinian PSO. Signal Image Video Process. 2012, 6, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Couceiro, M.S.; Benediktsson, J.A. Classification of hyperspectral images with binary fractional order Darwinian PSO and random forests. In Proceedings of the Image and Signal Processing for Remote Sensing XIX; Bruzzone, L., Ed.; International Society for Optics and Photonics, SPIE: San Francisco, CA, USA, 2013; Volume 8892, p. 88920. [Google Scholar] [CrossRef]
- Ghamisi, P.; Couceiro, M.S.; Martins, F.M.L.; Benediktsson, J.A. Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2382–2394. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Zhang, H.; Qiu, C.H.; Xia, S.R. A Novel Feature Selection Method Based on Extreme Learning Machine and Fractional-Order Darwinian PSO. Comput. Intell. Neurosci. 2018, 2018, 5078268. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Panda, S.S.; Sabut, S. Detection of Liver Cancer using Optimized Techniques in CT Scan Images. In Proceedings of the 2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), Bhubaneswar, India, 22–24 October 2018; Volume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Subudhi, A.; Acharya, U.R.; Dash, M.; Jena, S.; Sabut, S. Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images. Comput. Biol. Med. 2018, 103, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, A.; Dash, M.; Sabut, S. Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern. Biomed. Eng. 2020, 40, 277–289. [Google Scholar] [CrossRef]
- Naveen, J.; Selvam, S.; Selvam, B. FO-DPSO Algorithm for Segmentation and Detection of Diabetic Mellitus for Ulcers. Int. J. Image Graph. 2022, 2240011. [Google Scholar] [CrossRef]
- Nalini, U.; Rani, D.N.U. NOVEL BRAIN TUMOR SEGMENTATION USING FUZZY C-MEANS WITH FRACTIONAL ORDER DARWINIAN PARTICLE SWARM OPTIMIZATION. Int. J. Early Child. Spec. Educ. (INT-JECSE) 2022, 14, 1418–1426. [Google Scholar] [CrossRef]
- Chandanapalli, S.B.; Reddy, E.S.; Lakshmi, D.R. DFTDT: Distributed functional tangent decision tree for aqua status prediction in wireless sensor networks. Int. J. Mach. Learn. Cybern. 2018, 9, 1419–1434. [Google Scholar] [CrossRef]
- Ahmadi, F.; Pourmahmood Aghababa, M.; Kalbkhani, H. Nonlinear Regression Model Based on Fractional Bee Colony Algorithm for Loan Time Series. J. Inf. Syst. Telecommun. (JIST) 2022, 2, 141. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, Y.; Li, P. Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy. Accid. Anal. Prev. 2022, 166, 106549. [Google Scholar] [CrossRef]
- Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines; Springer International: Cham, Switzerland, 2015.
- Niu, H.; Chen, Y.; Guo, L.; West, B.J. A New Triangle: Fractional Calculus, Renormalization Group, and Machine Learning. In Proceedings of the 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 29–31 August 2021; Volume 7. [Google Scholar] [CrossRef]
- Niu, H.; Chen, Y.; West, B.J. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? Entropy 2021, 23, 297. [Google Scholar] [CrossRef]
- Yousri, D.; AbdelAty, A.M.; Al-qaness, M.A.; Ewees, A.A.; Radwan, A.G.; Abd Elaziz, M. Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging Optimizer as a case study. Expert Syst. Appl. 2022, 192, 116355. [Google Scholar] [CrossRef]
- Khan, N.; Alsaqer, M.; Shah, H.; Badsha, G.; Abbasi, A.A.; Salehian, S. The 10 Vs, Issues and Challenges of Big Data. In Proceedings of the 2018 International Conference on Big Data and Education (ICBDE ’18); Association for Computing Machinery: New York, NY, USA, 2018; pp. 52–56. [Google Scholar] [CrossRef]
- Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773–840. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Shi, S.; West, B.J. Renormalization group and fractional calculus methods in a complex world: A review. Fract. Calc. Appl. Anal. 2021, 24, 5–53. [Google Scholar] [CrossRef]
- Mehta, P.; Schwab, D.J. An exact mapping between the Variational Renormalization Group and Deep Learning. arXiv 2014, arXiv:1410.3831. [Google Scholar]
- Lin, H.W.; Tegmark, M.; Rolnick, D. Why Does Deep and Cheap Learning Work So Well? J. Stat. Phys. 2017, 168, 1223–1247. [Google Scholar] [CrossRef] [Green Version]
- Stanley, H.E.; Amaral, L.A.N.; Buldyrev, S.V.; Gopikrishnan, P.; Plerou, V.; Salinger, M.A. Self-organized complexity in economics and finance. Proc. Natl. Acad. Sci. USA 2002, 99, 2561–2565. [Google Scholar] [CrossRef] [Green Version]
- Park, J.B.; Lee, J.W.; Yang, J.S.; Jo, H.H.; Moon, H.T. Complexity analysis of the stock market. Phys. A Stat. Mech. Appl. 2007, 379, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Dominique, C.R.; Solis, L.E.R. Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index. Int. Bus. Res. 2012, 5, 38. [Google Scholar] [CrossRef]
- Zhou, W.X.; Sornette, D. Renormalization group analysis of the 2000–2002 anti-bubble in the US S&P500 index: Explanation of the hierarchy of five crashes and prediction. Phys. A Stat. Mech. Appl. 2003, 330, 584–604. [Google Scholar] [CrossRef] [Green Version]
- Koch-Janusz, M.; Ringel, Z. Mutual information, neural networks and the renormalization group. Nat. Phys. 2018, 14, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef] [Green Version]
- Molz, F.J.; Rajaram, H.; Lu, S. Stochastic fractal-based models of heterogeneity in subsurface hydrology: Origins, applications, limitations, and future research questions. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef]
- Xie, H. Fractals in Rock Mechanics; CRC Press: London, UK, 2020. [Google Scholar] [CrossRef]
- Ku, S.; Lee, C.; Chang, W.; Song, J.W. Fractal structure in the S&P500: A correlation-based threshold network approach. Chaos Solitons Fractals 2020, 137, 109848. [Google Scholar] [CrossRef]
- Zaslavsky, G.M.; Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK; New York, NY, USA, 2004. [Google Scholar]
- AI Is Changing How We Do Science. Get a Glimpse. Available online: https://www.science.org/content/article/ai-changing-how-we-do-science-get-glimpse (accessed on 6 December 2022).
- Leeming, J. How AI is helping the natural sciences. Nature 2021, 598, S5–S7. [Google Scholar] [CrossRef]
- Krenn, M.; Pollice, R.; Guo, S.Y.; Aldeghi, M.; Cervera-Lierta, A.; Friederich, P.; dos Passos Gomes, G.; Häse, F.; Jinich, A.; Nigam, A.; et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 2022, 4, 761–769. [Google Scholar] [CrossRef]
- Islam, M.S.; Qaraqe, M.K.; Belhaouari, S.B. Early Prediction of Hemoglobin Alc: A novel Framework for better Diabetes Management. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 542–547. [Google Scholar] [CrossRef]
- Islam, M.S.; Qaraqe, M.K.; Belhaouari, S.B.; Abdul-Ghani, M.A. Advanced Techniques for Predicting the Future Progression of Type 2 Diabetes. IEEE Access 2020, 8, 120537–120547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raubitzek, S.; Mallinger, K.; Neubauer, T. Combining Fractional Derivatives and Machine Learning: A Review. Entropy 2023, 25, 35. https://doi.org/10.3390/e25010035
Raubitzek S, Mallinger K, Neubauer T. Combining Fractional Derivatives and Machine Learning: A Review. Entropy. 2023; 25(1):35. https://doi.org/10.3390/e25010035
Chicago/Turabian StyleRaubitzek, Sebastian, Kevin Mallinger, and Thomas Neubauer. 2023. "Combining Fractional Derivatives and Machine Learning: A Review" Entropy 25, no. 1: 35. https://doi.org/10.3390/e25010035
APA StyleRaubitzek, S., Mallinger, K., & Neubauer, T. (2023). Combining Fractional Derivatives and Machine Learning: A Review. Entropy, 25(1), 35. https://doi.org/10.3390/e25010035