Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Neural Networks of C. elegans throughout Development
2.2. Network Structure Analysis
2.3. Generation of Randomized Networks
2.4. Data Analysis or Statistical Analysis
3. Results
3.1. Small-World Properties, Asymmetry between In-Degrees and Out-Degrees of C. Elegans Neural Networks throughout Development
3.2. A Model of Network Evolution with Different Initial Attractiveness for In-Degrees or Out-Degrees
3.3. Simulation
3.3.1. The Asymmetry between In-Degrees and Out-Degrees of Nodes in a Network Is Closely Related to the Initial Attractiveness of In-Degrees and Out-Degrees
3.3.2. The Shape of the Degree Distribution Changes with the Initial Attractiveness of In-Degrees and Out-Degrees
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. Soc. Lond. Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef]
- Jarrell, T.A.; Wang, Y.; Bloniarz, A.E.; Brittin, C.A.; Xu, M.; Thomson, J.N.; Albertson, D.G.; Hall, D.H.; Emmons, S.W. The connectome of a decision-making neural network. Science 2012, 337, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.; Tang, L.T.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef]
- Witvliet, D.; Mulcahy, B.; Mitchell, J.K.; Meirovitch, Y.; Berger, D.R.; Wu, Y.; Liu, Y.; Koh, W.X.; Parvathala, R.; Holmyard, D.; et al. Connectomes across development reveal principles of brain maturation. Nature 2021, 596, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Lu, Z.; Meinertzhagen, I.A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 2016, 5, e16962. [Google Scholar] [CrossRef]
- Ivan, L.; Fritsch, P.M.; Nanae, G.; Larisa, N.M.G.; Fetter, R.D.; Schneider-Mizell, C.M.; Truman, J.W.; Marta, Z.; Cardona, A.; Sprecher, S.G. Organization of the Drosophila larval visual circuit. eLife 2017, 6, e28387. [Google Scholar] [CrossRef]
- Berck, M.E.; Khandelwal, A.; Claus, L.; Hernandez-Nunez, L.; Si, G.; Tabone, C.J.; Li, F.; Truman, J.W.; Fetter, R.D.; Louis, M.; et al. The wiring diagram of a glomerular olfactory system. eLife 2016, 5, e14859. [Google Scholar] [CrossRef]
- Eichler, K.; Li, F.; Litwin-Kumar, A.; Park, Y.; Andrade, I.; Schneider-Mizell, C.M.; Saumweber, T.; Huser, A.; Eschbach, C.; Gerber, B.; et al. The complete connectome of a learning and memory centre in an insect brain. Nature 2017, 548, 175–182. [Google Scholar] [CrossRef]
- Zarin, A.A.; Mark, B.; Cardona, A.; Litwin-Kumar, A.; Doe, C.Q. A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity. BioRxiv 2019, 617977. [Google Scholar] [CrossRef] [Green Version]
- Takemura, S.y.; Bharioke, A.; Lu, Z.; Nern, A.; Vitaladevuni, S.; Rivlin, P.K.; Katz, W.T.; Olbris, D.J.; Plaza, S.M.; Winston, P.; et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 2013, 500, 175–181. [Google Scholar] [CrossRef]
- Scheffer, L.K.; Xu, C.S.; Januszewski, M.; Lu, Z.; Takemura, S.y.; Hayworth, K.J.; Huang, G.B.; Shinomiya, K.; Maitlin-Shepard, J.; Berg, S.; et al. A connectome and analysis of the adult Drosophila central brain. eLife 2020, 9, e57443. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.S.; Januszewski, M.; Lu, Z.; Takemura, S.y.; Hayworth, K.; Huang, G.; Shinomiya, K.; Maitin-Shepard, J.; Ackerman, D.; Berg, S.; et al. A connectome of the adult Drosophila central brain. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Lindsey, J.W.; Marin, E.C.; Otto, N.; Dreher, M.; Dempsey, G.; Stark, I.; Bates, A.S.; Pleijzier, M.W.; Schlegel, P.; et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 2020, 9, e62576. [Google Scholar] [CrossRef]
- Helmstaedter, M.; Briggman, K.L.; Turaga, S.C.; Jain, V.; Seung, H.S.; Denk, W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Berry, H.; Temam, O. Modeling self-developing biological neural networks. Neurocomputing 2007, 70, 2723–2734. [Google Scholar] [CrossRef] [Green Version]
- Varshney, L.R.; Chen, B.L.; Paniagua, E.; Hall, D.H.; Chklovskii, D.B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 2011, 7, e1001066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reese, T.M.; Brzoska, A.; Yott, D.T.; Kelleher, D.J. Analyzing self-similar and fractal properties of the C. elegans neural network. PLoS ONE 2012, 7, e40483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network motifs: Simple building blocks of complex networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef] [Green Version]
- Milo, R.; Itzkovitz, S.; Kashtan, N.; Levitt, R.; Shen-Orr, S.; Ayzenshtat, I.; Sheffer, M.; Alon, U. Superfamilies of evolved and designed networks. Science 2004, 303, 1538–1542. [Google Scholar] [CrossRef] [Green Version]
- Amaral, L.; Scala, A.; Barthelemy, M.; Stanley, H. Classes of small-world networks. Proc. Natl. Acad. Sci. USA 2000, 97, 11149–11152. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Barabási, A.L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 2000, 85, 5234–5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorogovtsev, S.; Mendes, J.; Samukhin, A. Structure of growing networks with preferential linking. Phys. Rev. Lett. 2000, 85, 4633–4636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krapivsky, P.; Redner, S.; Leyvraz, F. Connectivity of growing random networks. Phys. Rev. Lett. 2000, 85, 4629–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianconi, G.; Barabasi, A. Competition and multiscaling in evolving networks. Europhys. Lett. 2001, 54, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Ergun, G.; Rodgers, G. Growing random networks with fitness. Phisical Stat. Mech. Its Appl. 2002, 303, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, X.; Zhu, J. Effect of aging on network structure. Phys. Rev. E 2003, 68. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Saito, K.; Ueda, N. Modeling of growing networks with directional attachment and communities. Neural Netw. 2004, 17, 975–988. [Google Scholar] [CrossRef]
- Dasgupta, S.; Stevens, C.F.; Navlakha, S. A neural algorithm for a fundamental computing problem. Science 2017, 358, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Rideaux, R.; Storrs, K.R.; Maiello, G.; Welchman, A.E. How multisensory neurons solve causal inference. Proc. Natl. Acad. Sci. USA 2021, 118, e2106235118. [Google Scholar] [CrossRef]
- Liang, Y.; Ryali, C.K.; Hoover, B.; Grinberg, L.; Navlakha, S.; Krotov, D.; Zaki, M.J. Can a fruit fly learn word embeddings? In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021.
- Lechner, M.; Hasani, R.; Amini, A.; Henzinger, T.A.; Rus, D.; Grosu, R. Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2020, 2, 642–652. [Google Scholar] [CrossRef]
- Humphries, M.D.; Gurney, K. Network ’Small-World-Ness’: A quantitative method for determining canonical network equivalence. PLoS ONE 2008, 3, e0002051. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-order organization of complex networks. Science 2016, 353, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Penzes, P.; Cahill, M.E.; Jones, K.A.; VanLeeuwen, J.E.; Woolfrey, K.M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 2011, 14, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, A.; Flammini, A.; Maritan, A.; Vespignani, A. Modeling of protein interaction networks. ComPlexUs 2003, 1, 38–44. [Google Scholar] [CrossRef]
Stages | L1 | L2 | L3 | Adult | ||||
---|---|---|---|---|---|---|---|---|
Dataset | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Developmental age | 0 | 5 | 8 | 16 | 23 | 27 | 50 | 50 |
Stages | L1 | L2 | L3 | Adult | ||||
---|---|---|---|---|---|---|---|---|
Dataset | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
N | 187 | 193 | 198 | 203 | 210 | 216 | 221 | 219 |
M | 775 | 986 | 1012 | 1136 | 1515 | 1525 | 2191 | 2186 |
0.022 | 0.027 | 0.026 | 0.028 | 0.035 | 0.033 | 0.045 | 0.046 | |
4.144 | 5.109 | 5.111 | 5.596 | 7.214 | 7.060 | 9.914 | 9.982 | |
0.109 | 0.125 | 0.122 | 0.120 | 0.154 | 0.153 | 0.184 | 0.190 | |
L | 2.536 | 2.356 | 2.387 | 2.365 | 2.418 | 2.201 | 2.069 | 2.058 |
0.022 | 0.027 | 0.026 | 0.028 | 0.035 | 0.033 | 0.045 | 0.046 | |
3.669 | 3.347 | 3.363 | 3.242 | 2.910 | 2.952 | 2.598 | 2.588 | |
0.038 | 0.047 | 0.045 | 0.047 | 0.057 | 0.058 | 0.075 | 0.074 | |
2.249 | 2.265 | 2.188 | 2.203 | 2.043 | 1.988 | 1.855 | 1.840 | |
7.17 | 6.58 | 6.61 | 5.87 | 5.30 | 6.22 | 5.13 | 5.19 | |
2.54 | 2.56 | 2.49 | 2.38 | 2.28 | 2.38 | 2.20 | 2.30 | |
0.028 | 0.073 | 0.089 | 0.115 | 0.126 | 0.133 | 0.144 | 0.138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Shi, Z.; Gong, Z.; He, S. Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development. Entropy 2023, 25, 51. https://doi.org/10.3390/e25010051
Zhao H, Shi Z, Gong Z, He S. Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development. Entropy. 2023; 25(1):51. https://doi.org/10.3390/e25010051
Chicago/Turabian StyleZhao, Hongfei, Zhiguo Shi, Zhefeng Gong, and Shibo He. 2023. "Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development" Entropy 25, no. 1: 51. https://doi.org/10.3390/e25010051
APA StyleZhao, H., Shi, Z., Gong, Z., & He, S. (2023). Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development. Entropy, 25(1), 51. https://doi.org/10.3390/e25010051