Generalized Quantum Convolution for Multidimensional Data
Abstract
:1. Introduction
2. Background
2.1. Related Work
2.2. Classical to Quantum (C2Q)
2.3. Quantum Shift Operation
3. Materials and Methods
- Shift: Auxiliary filter qubits and controlled quantum decrementers are used to create shifted (unity-strided) replicas of input data.
- Multiply-and-accumulate: Arbitrary state synthesis and classical-to-quantum (C2Q) encoding are applied to create generic multidimensional filters.
- Data rearrangement: Quantum permutation operations are applied to restructure the fragmented data into one contiguous output datum.
3.1. Quantum Convolution for One-Dimensional Data
3.1.1. Shift Operation
3.1.2. Multiply-and-Accumulate Operation
3.1.3. Data Rearrangement
3.1.4. Circuit Depth Analysis of 1-D Quantum Convolution
3.2. Depth-Optimized 1-D Quantum Convolution
Circuit Depth Analysis of Optimized 1-D Quantum Convolution
3.3. Generalized Quantum Convolution for Multidimensional Data and Filters
Circuit Depth Analysis of Generalized Multidimensional Quantum Convolution
4. Experimental Setup and Results
5. Discussion
5.1. Arbitrary Multidimensional Filtering
5.2. Circuit Depth
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1-D | One Dimensional |
C2Q | Classical to Quantum |
FFT | Fast Fourier Transform |
FRQI | Flexible Representation of Quantum Images |
GEMM | General Matrix Multiplication |
NEQR | Novel Enhanced Quantum Representation |
QHED | Quantum Hadamard Edge Detection |
QWT | Quantum Wavelet Transform |
References
- Rhodes, W. Acousto-optic signal processing: Convolution and correlation. Proc. IEEE 1981, 69, 65–79. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 253–256. [Google Scholar] [CrossRef]
- Fan, P.; Zhou, R.G.; Hu, W.; Jing, N. Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. 2018, 18, 24. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, H.; Chu, P. Demonstration of Quantum Image Edge Extration Enhancement Through Improved Sobel Operator. IEEE Access 2020, 8, 210277–210285. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y. QSobel: A novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Zhou, R.G.; Yu, H.; Cheng, Y.; Li, F.X. Quantum image edge extraction based on improved Prewitt operator. Quantum Inf. Process. 2019, 18, 261. [Google Scholar] [CrossRef]
- Li, P. Quantum implementation of the classical Canny edge detector. Multimed. Tools Appl. 2022, 81, 11665–11694. [Google Scholar] [CrossRef]
- IBM Quantum. Qiskit: An Open-source Framework for Quantum Computing. 2021. Available online: https://zenodo.org/records/7416349 (accessed on 19 October 2023).
- Burrus, C.S.; Parks, T.W. DFT/FFT and Convolution Algorithms: Theory and Implementation, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Podlozhnyuk, V. FFT-based 2D convolution. NVIDIA 2007, 32. Available online: https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf (accessed on 19 October 2023).
- NVIDIA. Convolution Algorithms. 2023. Available online: https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#conv-algo (accessed on 19 October 2023).
- NVIDIA. CUTLASS Convolution. 2023. Available online: https://github.com/NVIDIA/cutlass/blob/main/media/docs/implicit_gemm_convolution.md (accessed on 19 October 2023).
- Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 2011, 10, 63–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y.; Wang, M. NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 2013, 12, 2833–2860. [Google Scholar] [CrossRef]
- Yao, X.W.; Wang, H.; Liao, Z.; Chen, M.C.; Pan, J.; Li, J.; Zhang, K.; Lin, X.; Wang, Z.; Luo, Z.; et al. Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment. Phys. Rev. X 2017, 7, 031041. [Google Scholar] [CrossRef]
- El-Araby, E.; Mahmud, N.; Jeng, M.J.; MacGillivray, A.; Chaudhary, M.; Nobel, M.A.I.; Islam, S.I.U.; Levy, D.; Kneidel, D.; Watson, M.R.; et al. Towards Complete and Scalable Emulation of Quantum Algorithms on High-Performance Reconfigurable Computers. IEEE Trans. Comput. 2023, 72, 2350–2364. [Google Scholar] [CrossRef]
- Li, X.; Yang, G.; Torres, C.M.; Zheng, D.; Wang, K.L. A Class of Efficient Quantum Incrementer Gates for Quantum Circuit Synthesis. Int. J. Mod. Phys. B 2014, 28, 1350191. [Google Scholar] [CrossRef]
- Balauca, S.; Arusoaie, A. Efficient Constructions for Simulating Multi Controlled Quantum Gates. In Proceedings of the Computational Science—ICCS 2022, London, UK, 21–23 June 2022; Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 179–194. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010; p. 409. [Google Scholar] [CrossRef]
- Geneva, S. Sound Quality Assessment Material: Recordings for Subjective Tests. 1988. Available online: https://tech.ebu.ch/publications/sqamcd (accessed on 19 October 2023).
- Graña, M.; Veganzons, M.A.; Ayerdi, B. Hyperspectral Remote Sensing Scenes. Available online: https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_(KSC) (accessed on 19 October 2023).
- Jeng, M.; Islam, S.I.U.; Levy, D.; Riachi, A.; Chaudhary, M.; Nobel, M.A.I.; Kneidel, D.; Jha, V.; Bauer, J.; Maurya, A.; et al. Improving quantum-to-classical data decoding using optimized quantum wavelet transform. J. Supercomput. 2023, 79, 20532–20561. [Google Scholar] [CrossRef]
a Depth complexity of quantum data encoding (I/O) techniques | |||
FRQI [14] | NEQR [15] | C2Q [17] | |
b Depth complexity of quantum convolution algorithms for a fixed filter | |||
Proposed | Related Work [4,5,6,7,8] | ||
c Complexity of proposed technique compared to classical convolution | |||
Proposed | Direct (CPU) [10] | FFT (CPU/GPU) [10,11] | GEMM (GPU) [12,13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeng, M.; Nobel, A.; Jha, V.; Levy, D.; Kneidel, D.; Chaudhary, M.; Islam, I.; Rahman, M.M.; El-Araby, E. Generalized Quantum Convolution for Multidimensional Data. Entropy 2023, 25, 1503. https://doi.org/10.3390/e25111503
Jeng M, Nobel A, Jha V, Levy D, Kneidel D, Chaudhary M, Islam I, Rahman MM, El-Araby E. Generalized Quantum Convolution for Multidimensional Data. Entropy. 2023; 25(11):1503. https://doi.org/10.3390/e25111503
Chicago/Turabian StyleJeng, Mingyoung, Alvir Nobel, Vinayak Jha, David Levy, Dylan Kneidel, Manu Chaudhary, Ishraq Islam, Muhammad Momin Rahman, and Esam El-Araby. 2023. "Generalized Quantum Convolution for Multidimensional Data" Entropy 25, no. 11: 1503. https://doi.org/10.3390/e25111503
APA StyleJeng, M., Nobel, A., Jha, V., Levy, D., Kneidel, D., Chaudhary, M., Islam, I., Rahman, M. M., & El-Araby, E. (2023). Generalized Quantum Convolution for Multidimensional Data. Entropy, 25(11), 1503. https://doi.org/10.3390/e25111503