Testing the Minimum System Entropy and the Quantum of Entropy
Abstract
:1. Introduction
2. The Definition of Entropy
3. The Third Law of Thermodynamics
The entropy change associated with a chemical or physical transition between condensed phases approaches zero when the temperature approaches absolute zero.
Absolute zero temperature cannot be reached in a finite number of steps.
The entropy of a system approaches a constant value when its temperature approaches absolute zero.
At zero temperature, the entropy of a chemically homogeneous body in equilibrium is zero.
- –
- Is the third law confirmed by all experiments?
- –
- Is the third law valid in quantum theory?
- –
- Is the third law valid for small systems, and in particular, for single particles?
4. A Smallest Entropy Value?
- –
- Szilard does not discuss entropy values per particle in multi-particle systems. He leaves open whether a smallest or largest entropy value or entropy change per particle exists in nature.
- –
- Szilard does not discuss the entropy of macroscopic systems. He leaves open whether a smallest system entropy value exists in nature. Szilard also leaves open whether a smallest value for the entropy change for a macroscopic system exists in nature.
- –
- Szilard discusses the case of a one-particle system with a small number of microstates. He suggests a characteristic value for the entropy change for small numbers of microstates. He does show—when discussing the first equation in his paper—that a smaller value of entropy does not arise. In contrast, high numbers of microstates allow both smaller and larger values of entropy change.
5. The Entropy per Particle in Macroscopic Systems
6. Quantum Theory and the Third Law
7. Entropy and Entropy Change in Single-Particle Systems
▷ Single particles carry a finite entropy that is never lower than .
8. Minimum System Entropy and Observability
▷ Observability implies a smallest entropy value of for every system.
▷ System entropy is limited by .
9. Two-Level-Systems and Entropy Calculations for Similar Idealized Systems
10. The Minimum Entropy vs. the Extensivity of Entropy
11. What Is the Minimum Entropy Value?
12. Is Total System Entropy Quantized?
13. Black Hole Horizons
14. Against a ‘Quantum of Entropy’
15. Zimmermann’s Principle of the Entropy Limit
16. Thermodynamics from the Quantum of Entropy
17. Indeterminacy Relations
18. Entropy Production
19. Similarities and Differences between Action and Entropy
▷ The Boltzmann constant k expresses that everything that moves is made of discrete constituents.
20. Conclusions: A Consistent Presentation of the Quantum of Entropy
▷ The minimum entropy limit holds for every closed physical system.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmermann, H.W. Particle Entropies and Entropy Quanta. I. The Ideal Gas. Z. Phys. Chem. 2000, 214, 187. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Particle Entropies and Entropy Quanta II. The Photon Gas. Z. Phys. Chem. 2000, 214, 347. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Particle Entropies and Entropy Quanta. III. The van der Waals Gas. Z. Phys. Chem. 2002, 216, 615. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Particle Entropies and Entropy Quanta: IV. The Ideal Gas, the Second Law of Thermodynamics, and the P–t Uncertainty Relation. Z. Phys. Chem. 2003, 217, 55–78. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Particle Entropies and Entropy Quanta V. The P–t Uncertainty Relation. Z. Phys. Chem. 2003, 217, 1097–1108. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, G. Les Constantes Universelles; Questions de Sciences; Hachette: Paris, France, 1991. [Google Scholar]
- Falk, G.; Herrmann, F.; Schmid, G.B. Energy forms or energy carriers? Am. J. Phys. 1983, 51, 1074–1077. [Google Scholar] [CrossRef]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Carrington, G. Basic Thermodynamics; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Blundell, S.J.; Blundell, K.M. Concepts in Thermal Physics; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Wilks, J. The Third Law of Thermodynamics; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Adkins, C.J. Equilibrium Thermodynamics; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Steane, A.M. On determining absolute entropy without quantum theory or the third law of thermodynamics. New J. Phys. 2016, 18, 043022. [Google Scholar] [CrossRef]
- Šafránek, D.; Aguirre, A.; Schindler, J.; Deutsch, J. A brief introduction to observational entropy. Found. Phys. 2021, 51, 1–20. [Google Scholar] [CrossRef]
- Prigogine, I.; Kondepudi, D.K.; Pahaut, S. Thermodynamique: Des Moteurs Thermiques Aux Structures Dissipatives; Éditions Odile Jacob: Paris, France, 1999. [Google Scholar]
- Wright, P.; Parker, M.C.; Lord, A. Minimum-and maximum-entropy routing and spectrum assignment for flexgrid elastic optical networking. J. Opt. Commun. Netw. 2015, 7, A66–A72. [Google Scholar] [CrossRef]
- Mukherjee, B.; Tomkos, I.; Tornatore, M.; Winzer, P.; Zhao, Y. Springer Handbook of Optical Networks; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Nernst, W. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten Ges. Wiss. Gött. Math.-Phys. Kl. 1906, 1906, 1–40. [Google Scholar]
- Klimenko, A. Teaching the Third Law of Thermodynamics. Open Thermodyn. J. 2012, 6, 1–14. [Google Scholar] [CrossRef]
- Planck, M. Vorlesungen Über Thermodynamik, 10th ed.; Walter de Gruyter & Co.: Berlin, Germany, 1954. [Google Scholar]
- Planck, M. Über neuere thermodynamische Theorien (Nernstsches Wärmetheorem und Quantenhypothese). Phys. Z. 1912, 13, 165–175. [Google Scholar]
- Gutzow, I.; Schmelzer, J.W. The Third Principle of thermodynamics and the zero-point entropy of glasses: History and new developments. J. Non-Cryst. Solids 2009, 355, 581–594. [Google Scholar] [CrossRef]
- Eastman, E. The Third Law of Thermodynamics. Chem. Rev. 1936, 18, 257–274. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; John Wiley & Sons: New York, NY, USA, 1954. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGrw-Hill: Singapore, 1965. [Google Scholar]
- Sommerfeld, A. Thermodynamik und Statistik; Verlag Harri Deutsch: Thun, Switzerland, 1977. [Google Scholar]
- Tolman, R. The Principles of Statistical Mechanics; Dover Publications: New York, NY, USA, 1980. [Google Scholar]
- van Ekeren, P. Chapter 2—Thermodynamic Background to Thermal Analysis and Calorimetry. In Handbook of Thermal Analysis and Calorimetry; Principles and Practice; Brown, M.E., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; Volume 1, pp. 75–145. [Google Scholar] [CrossRef]
- Gyftopoulos, E.; Beretta, G. Thermodynamics, Foundations and Applications; Dover Publications: New York, NY, USA, 2005. [Google Scholar]
- Honig, J. Chapter 1—Fundamentals. In Thermodynamics, 3rd ed.; Honig, J., Ed.; Academic Press: Amsterdam, The Netherlands, 2007; pp. 1–110. [Google Scholar] [CrossRef]
- Klotz, I.; Rosenberg, R. Chemical Thermodynamics, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Masanes, L.; Oppenheim, J. A general derivation and quantification of the third law of thermodynamics. Nat. Commun. 2017, 8, 14538. [Google Scholar] [CrossRef]
- Uffink, J. Masanes and Oppenheim on the Third Law of Thermodynamics. Found. Phys. 2017, 47, 871–872. [Google Scholar] [CrossRef]
- Marquet, P. The third law of thermodynamics or an absolute definition for Entropy. Part 1: The origin and applications in thermodynamics. arXiv 2019, arXiv:1904.11696. [Google Scholar] [CrossRef]
- Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 1929, 53, 840–856. [Google Scholar] [CrossRef]
- Koski, J.V.; Maisi, V.F.; Pekola, J.P.; Averin, D.V. Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. USA 2014, 111, 13786–13789. [Google Scholar] [CrossRef]
- Durrani, Z.; Abualnaja, F.; Jones, M. Room temperature Szilard cycle and entropy exchange at the Landauer limit in a dopant atom double quantum dot silicon transistor. J. Phys. D Appl. Phys. 2022, 55, 285304. [Google Scholar] [CrossRef]
- Abualnaja, F.; He, W.; Jones, M.; Durrani, Z. Device fabrication for investigating Maxwell’s Demon at room-temperature using double quantum dot transistors in silicon. Micro Nano Eng. 2022, 14, 100114. [Google Scholar] [CrossRef]
- Vieira, C.H.S.; de Oliveira, J.L.D.; Santos, J.F.G.; Dieguez, P.R.; Serra, R.M. Exploring Quantum Thermodynamics with NMR. J. Mag. Res. Open 2023, 16–17, 100105. [Google Scholar] [CrossRef]
- Fernández de Córdoba, P.; Isidro, J.; Vazquez Molina, J. The holographic quantum. Found. Phys. 2016, 46, 787–803. [Google Scholar] [CrossRef]
- Leff, H.S. What if entropy were dimensionless? Am. J. Phys. 1999, 67, 1114–1122. [Google Scholar] [CrossRef]
- Smith, D.R.; Fickett, F. Low-temperature properties of silver. J. Res. Natl. Inst. Stan. 1995, 100, 119. [Google Scholar] [CrossRef]
- Olf, R.; Fang, F.; Marti, G.E.; MacRae, A.; Stamper-Kurn, D.M. Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature. Nat. Phys. 2015, 11, 720–723. [Google Scholar] [CrossRef]
- Frye, K.; Abend, S.; Bartosch, W.; Bawamia, A.; Becker, D.; Blume, H.; Braxmaier, C.; Chiow, S.W.; Efremov, M.A.; Ertmer, W.; et al. The Bose-Einstein condensate and cold atom laboratory. EPJ Quantum Technol. 2021, 8, 1. [Google Scholar] [CrossRef]
- Khodel, V.; Zverev, M.; Yakovenko, V.M. Curie law, entropy excess, and superconductivity in heavy fermion metals and other strongly interacting Fermi liquids. Phys. Rev. Lett. 2005, 95, 236402. [Google Scholar] [CrossRef]
- Omran, A.; Boll, M.; Hilker, T.A.; Kleinlein, K.; Salomon, G.; Bloch, I.; Gross, C. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 2015, 115, 263001. [Google Scholar] [CrossRef]
- Glick, F.I.; Werntz, J.H.J. Entropy of the Superfluid Component of Helium. Phys. Rev. 1969, 178, 314. [Google Scholar] [CrossRef]
- Mongiovì, M.S. Superfluidity and Entropy Conservation in Extended Thermodynamics. J. Non-Equilib. Thermodyn. 1991, 16, 225–239. [Google Scholar] [CrossRef]
- Halperin, W.; Rasmussen, F.B.; Archie, C.N.; Richardson, R.C. Properties of melting 3He: Specific heat, entropy, latent heat, and temperature. J. Low Temp. Phys. 1978, 31, 617–698. [Google Scholar] [CrossRef]
- Ludloff, H. Zur Frage der Nullpunktsentropie des festen Körpers vom Standpunkt der Quantenstatistik I. Diskussion des experimentellen Materials über die Nullpunktsentropie. Z. Phys. 1931, 68, 433–445. [Google Scholar] [CrossRef]
- Ludloff, H. Zur Frage der Nullpunktsentropie des festen Körpers vom Standpunkt der Quantenstatistik II. Die Formeln für die Entropie des festen Körpers in der Fermistatistik. Z. Phys. 1931, 68, 446–459. [Google Scholar] [CrossRef]
- Ludloff, H. Zur Frage der Nullpunktsentropie des festen Körpers vom Standpunkt der Quantenstatistik III. Zur prinzipiellen Frage der Mehrfachheit des untersten Energiezustandes. Z. Phys. 1931, 68, 460–492. [Google Scholar] [CrossRef]
- Dandoloff, R.; Zeyher, R. Statistical Foundations of the Third Law of Thermodynamics. Physica 1981, 108B, 1019–1020. [Google Scholar] [CrossRef]
- De Leo, L.; Bernier, J.S.; Kollath, C.; Georges, A.; Scarola, V.W. Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices. Phys. Rev. A 2011, 83, 023606. [Google Scholar] [CrossRef]
- Leff, H.S. Teaching the photon gas in introductory physics. Am. J. Phys. 2002, 70, 792–797. [Google Scholar] [CrossRef]
- Nagata, S. Another physical expression of the entropy for an ideal photon gas. Chem. Phys. 2019, 522, 55–58. [Google Scholar] [CrossRef]
- Ore, A. Entropy of radiation. Phys. Rev. 1955, 98, 887. [Google Scholar] [CrossRef]
- Scully, M.O. Laser entropy: From lasers and masers to Bose condensates and black holes. Phys. Scr. 2020, 95, 024002. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Yang, Y. First-Principle Derivation of Single-Photon Entropy and Maxwell–Jüttner Velocity Distribution. Entropy 2022, 24, 1609. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. 1907, 327, 180–190. [Google Scholar] [CrossRef]
- Strehlow, P. Die Kapitulation der Entropie. Phys. J. 2005, 4, 45. [Google Scholar]
- Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221–260. [Google Scholar] [CrossRef]
- Ali, M.M.; Huang, W.M.; Zhang, W.M. Quantum thermodynamics of single particle systems. Sci. Rep. 2020, 10, 13500. [Google Scholar] [CrossRef]
- Lawson, J. A Note on the Temperature Range of Applicability of the Third Law of Thermodynamics. Nuovo C. 1981, 65 B, 455–458. [Google Scholar] [CrossRef]
- Paños, F.J.; Pérez, E. Sackur-Tetrode equation in the lab. Eur. J. Phys. 2015, 36, 055033. [Google Scholar] [CrossRef]
- Loukhovitski, B.I.; Pelevkin, A.V.; Sharipov, A.S. Toward size-dependent thermodynamics of nanoparticles from quantum chemical calculations of small atomic clusters: A case study of (B2O3)n. Phys. Chem. Chem. Phys. 2022, 24, 13130–13148. [Google Scholar] [CrossRef]
- Ben-Naim, A. Entropy and Information Theory: Uses and Misuses. Entropy 2019, 21, 1170. [Google Scholar] [CrossRef]
- Ben-Naim, A. Entropy and Time. Entropy 2020, 22, 430. [Google Scholar] [CrossRef] [PubMed]
- Belgiorno, F. Notes on the third law of thermodynamics: I. J. Phys. A Math. Gen. 2003, 36, 8165–8193. [Google Scholar] [CrossRef]
- Belgiorno, F. Notes on the third law of thermodynamics: II. J. Phys. A Math. Gen. 2003, 36, 8195–8221. [Google Scholar] [CrossRef]
- Shastry, A.; Xu, Y.; Stafford, C.A. The third law of thermodynamics in open quantum systems. J. Chem. Phys. 2019, 151, 064115. [Google Scholar] [CrossRef]
- Falk, G. Third Law of Thermodynamics. Phys. Rev. 1959, 115, 249–253. [Google Scholar] [CrossRef]
- Griffiths, R.B. Microcanonical Ensemble in Quantum Statistical Mechanics. J. Math. Phys. 1965, 6, 1447–1461. [Google Scholar] [CrossRef]
- Aizenman, M.; Lieb, E.H. The third law of thermodynamics and the degeneracy of the ground state for lattice systems. J. Stat. Phys. 1981, 24, 279–297. [Google Scholar] [CrossRef]
- Brillouin, L. Science and Information Theory; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 2013. [Google Scholar]
- Pendry, J.B. Quantum limits to the flow of information and entropy. J. Phys. A Math. Gen. 1983, 16, 2161. [Google Scholar] [CrossRef]
- Blencowe, M.P.; Vitelli, V. Universal quantum limits on single-channel information, entropy, and heat flow. Phys. Rev. A 2000, 62, 052104. [Google Scholar] [CrossRef]
- Meschke, M.; Guichard, W.; Pekola, J.P. Single-mode heat conduction by photons. Nature 2006, 444, 187–190. [Google Scholar] [CrossRef]
- Kirwan, A., Jr. Intrinsic photon entropy? The darkside of light. Int. J. Eng. Sci. 2004, 42, 725–734. [Google Scholar] [CrossRef]
- Van Enk, S.; Nienhuis, G. Entropy production and kinetic effects of light. Phys. Rev. A 1992, 46, 1438. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mo, S.; Hu, P. Recent progress in thermodynamics of radiation—Exergy of radiation, effective temperature of photon and entropy constant of photon. Sci. China Ser. E Technol. Sci. 2008, 51, 1096–1109. [Google Scholar] [CrossRef]
- Liu, L. Comment on “Recent progress in thermodynamics of radiation—Exergy of radiation, effective temperature of photon and entropy constant of photon”. Sci. China Ser. E Technol. Sci. 2009, 52, 1809–1810. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, S.; Hu, P. Reply to” Comment on ‘Recent progress in thermodynamics of radiation—Exergy of radiation, effective temperature of photon and entropy constant of photon’”. Sci. China Ser. E Technol. Sci. 2010, 53, 878–880. [Google Scholar] [CrossRef]
- Schwab, K.; Henriksen, E.A.; Worlock, J.M.; Roukes, M.L. Measurement of the quantum of thermal conductance. Nature 2000, 404, 974–977. [Google Scholar] [CrossRef]
- Schwab, K.; Arlett, J.; Worlock, J.; Roukes, M. Thermal conductance through discrete quantum channels. Phys. E Low-Dimens. Syst. Nanostruct. 2001, 9, 60–68. [Google Scholar] [CrossRef]
- Schwab, K. Information on heat. Nature 2006, 444, 161–162. [Google Scholar] [CrossRef]
- Jezouin, S.; Parmentier, F.; Anthore, A.; Gennser, U.; Cavanna, A.; Jin, Y.; Pierre, F. Quantum limit of heat flow across a single electronic channel. Science 2013, 342, 601–604. [Google Scholar] [CrossRef]
- Partanen, M.; Tan, K.Y.; Govenius, J.; Lake, R.E.; Mäkelä, M.K.; Tanttu, T.; Möttönen, M. Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 2016, 12, 460–464. [Google Scholar] [CrossRef]
- Cui, L.; Jeong, W.; Hur, S.; Matt, M.; Klöckner, J.C.; Pauly, F.; Nielaba, P.; Cuevas, J.C.; Meyhofer, E.; Reddy, P. Quantized thermal transport in single-atom junctions. Science 2017, 355, 1192–1195. [Google Scholar] [CrossRef] [PubMed]
- Mosso, N.; Drechsler, U.; Menges, F.; Nirmalraj, P.; Karg, S.; Riel, H.; Gotsmann, B. Heat transport through atomic contacts. Nat. Nanotechnol. 2017, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Molenkamp, L.; Gravier, T.; Van Houten, H.; Buijk, O.; Mabesoone, M.; Foxon, C. Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 1992, 68, 3765. [Google Scholar] [CrossRef] [PubMed]
- Chiatti, O.; Nicholls, J.; Proskuryakov, Y.; Lumpkin, N.; Farrer, I.; Ritchie, D. Quantum thermal conductance of electrons in a one-dimensional wire. Phys. Rev. Lett. 2006, 97, 056601. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Heiblum, M.; Rosenblatt, A.; Oreg, Y.; Feldman, D.E.; Stern, A.; Umansky, V. Observed quantization of anyonic heat flow. Nature 2017, 545, 75–79. [Google Scholar] [CrossRef]
- Varlamov, A.A.; Kavokin, A.V.; Galperin, Y.M. Quantization of entropy in a quasi-two-dimensional electron gas. Phys. Rev. B 2016, 93, 155404. [Google Scholar] [CrossRef]
- Grassano, D.; Pulci, O.; Shubnyi, V.; Sharapov, S.; Gusynin, V.; Kavokin, A.; Varlamov, A. Detection of topological phase transitions through entropy measurements: The case of germanene. Phys. Rev. B 2018, 97, 205442. [Google Scholar] [CrossRef]
- Márkus, F.; Gambár, K. Minimum Entropy Production Effect on a Quantum Scale. Entropy 2021, 23, 1350. [Google Scholar] [CrossRef]
- Strunk, C. Quantum transport of particles and entropy. Entropy 2021, 23, 1573. [Google Scholar] [CrossRef]
- Bender, C.; Brody, D.C.; Meister, B. Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 2000, 33, 4427–4436. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Meister, B.K. Entropy and temperature of a quantum Carnot engine. Proc. R. Soc. Lond. Ser. A 2002, 458, 1519–1526. [Google Scholar] [CrossRef]
- Bender, C.M.; (Department of Physics, Washington University, St Louis, MO, USA). Personal communication, 2023.
- Brody, D.C.; (Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK). Personal communication, 2023.
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Natori, K.; Sano, N. Scaling limit of digital circuits due to thermal noise. J. Appl. Phys. 1998, 83, 5019–5024. [Google Scholar] [CrossRef]
- Ladyman, J.; Presnell, S.; Short, A.J.; Groisman, B. The connection between logical and thermodynamic irreversibility. Stud. Hist. Philos. Mod. Phys. 2007, 38, 58–79. [Google Scholar] [CrossRef]
- Norton, J.D. On Brownian computation. Int. J. Mod. Phys. Conf. Ser. World Sci. 2014, 33, 1460366. [Google Scholar] [CrossRef]
- Tsallis, C. The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks. Entropy 2011, 13, 1765–1804. [Google Scholar] [CrossRef]
- Anastasiadis, A. Special Issue: Tsallis Entropy. Entropy 2012, 14, 174–176. [Google Scholar] [CrossRef]
- Masi, M. A step beyond Tsallis and Rényi entropies. Phys. Lett. A 2005, 338, 217–224. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Lent, C.S.; Orlov, A.O.; Porod, W.; Snider, G.L. Energy Limits in Computation: A Review of Landauer’s Principle, Theory and Experiments; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 2014, 113, 190601. [Google Scholar] [CrossRef]
- Hong, J.; Lambson, B.; Dhuey, S.; Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2016, 2, e1501492. [Google Scholar] [CrossRef] [PubMed]
- Jaynes, E.T. The Gibbs paradox. In Maximum Entropy and Bayesian Methods: Seattle, 1991; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–21. [Google Scholar]
- Tsallis, C. Is the entropy Sq extensive or nonextensive? Astrophys. Space Sci. 2006, 305, 261–271. [Google Scholar] [CrossRef]
- Sela, E.; Oreg, Y.; Plugge, S.; Hartman, N.; Lüscher, S.; Folk, J. Detecting the universal fractional entropy of Majorana zero modes. Phys. Rev. Lett. 2019, 123, 147702. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamamura, Y. Configurational entropy and possible plateau smaller than R ln 2 in complex crystals. Thermochim. Acta 2005, 431, 21–23. [Google Scholar] [CrossRef]
- Mukhanov, V.F. Are black holes quantized? JETP Lett. 1986, 44, 63–66. [Google Scholar]
- García-Bellido, J. Quantum Black Holes. arXiv 1993, arXiv:hep-th/9302127. [Google Scholar]
- Feng, Z.W.; Yang, S.Z.; Li, H.L.; Zu, X.T. The Effects of Minimal Length, Maximal Momentum and Minimal Momentum in Entropic Force. Adv. High Energy Phys. 2016, 2016, 2341879. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hod, S. Bohr’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 1998, 81, 4293. [Google Scholar] [CrossRef]
- Hod, S. Bekenstein, I, and the quantum of black-hole surface area. In Jacob Bekenstein: The Conservative Revolutionary; World Scientific: Singapore, 2020; pp. 53–59. [Google Scholar]
- Kothawala, D.; Padmanabhan, T.; Sarkar, S. Is gravitational entropy quantized? Phys. Rev. D 2008, 78, 104018. [Google Scholar] [CrossRef]
- Skákala, J. Quantization of horizon entropy and the thermodynamics of spacetime. Braz. J. Phys. 2014, 44, 291–304. [Google Scholar] [CrossRef]
- Skákala, J.; Shankaranarayanan, S. Horizon spectroscopy in and beyond general relativity. Phys. Rev. D 2014, 89, 044019. [Google Scholar] [CrossRef]
- Maggiore, M. Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 2008, 100, 141301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Wei, S.W.; Li, R.; Ren, J.R. Quantization of black hole entropy from quasinormal modes. J. High Energy Phys. 2009, 2009, 076. [Google Scholar] [CrossRef]
- Ren, J.R.; Jia, L.Y.; Mao, P.J. Entropy quantization of d-dimensional Gauss–Bonnet black holes. Mod. Phys. Lett. A 2010, 25, 2599–2609. [Google Scholar] [CrossRef]
- Yu, L.; Qi, D.J. Spectroscopy of the Rotating Kaluza-Klein Spacetime via Revisited Adiabatic Invariant Quantity. Int. J. Theor. Phys. 2017, 56, 2151–2157. [Google Scholar] [CrossRef]
- Bakshi, A.; Majhi, B.R.; Samanta, S. Gravitational surface Hamiltonian and entropy quantization. Phys. Lett. B 2017, 765, 334–338. [Google Scholar] [CrossRef]
- Corichi, A.; Diaz-Polo, J.; Fernández-Borja, E. Black hole entropy quantization. Phys. Rev. Lett. 2007, 98, 181301. [Google Scholar] [CrossRef]
- Corichi, A. Black holes and entropy in loop quantum gravity: An overview. arXiv 2009, arXiv:0901.1302. [Google Scholar] [CrossRef]
- Sakalli, I.; Halilsoy, M.; Pasaoglu, H. Fading Hawking radiation. Astrophys. Space Sci. 2012, 340, 155–160. [Google Scholar] [CrossRef]
- Rahman, M.A. Entropy quantization of Reissner-Nordström black hole. Int. J. Theor. Phys. 2021, 60, 1783–1796. [Google Scholar] [CrossRef]
- Rahman, M.A. Entropy Quantization of Schwarzschild Black Hole. Commun. Theor. Phys. 2019, 71, 307. [Google Scholar] [CrossRef]
- Rahman, M.A. Entropy quantization of Schwarzschild–de Sitter black hole. Eur. Phys. J. Plus 2020, 135, 1–11. [Google Scholar] [CrossRef]
- Liao, L.; Shou-Yong, P. Sommerfeld’s quantum condition of action and the spectra of quantum Schwarzschild black hole. Chin. Phys. Lett. 2004, 21, 1887–1889. [Google Scholar] [CrossRef]
- Jiang, Q.Q. Revisit emission spectrum and entropy quantum of the Reissner–Nordström black hole. Eur. Phys. J. C 2012, 72, 2086. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Is physics asking for a new kinematics? Int. J. Mod. Phys. D 2008, 17, 2485–2493. [Google Scholar] [CrossRef]
- Mirza, B.; Mirzaiyan, Z.; Nadi, H. Maximum rate of entropy emission. Ann. Phys. 2020, 415, 168117. [Google Scholar] [CrossRef]
- Schiller, C. From maximum force to physics in 9 lines and towards relativistic quantum gravity. Z. Naturforsch. A 2023, 78, 145–159. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Verlinde, E. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys. 2011, 2011, 1–27. [Google Scholar] [CrossRef]
- Anacleto, M.; Brito, F.; Passos, E. Acoustic black holes and universal aspects of area products. Phys. Lett. A 2016, 380, 1105–1109. [Google Scholar] [CrossRef]
- Herdman, C.M.; Roy, P.N.; Melko, R.G.; Del Maestro, A. Entanglement area law in superfluid 4He. Nat. Phys. 2017, 13, 556–559. [Google Scholar] [CrossRef]
- Blöss, C. Entropie: Universelle Aspekte Einer Physikalischen Mengengröße; Books on Demand: Norderstedt, Germany, 2010. [Google Scholar]
- Hohm, U. Is there a minimum polarizability principle in chemical reactions? J. Phys. Chem. A 2000, 104, 8418–8423. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Plancks Strahlungsgesetz und die Quantisierung der Entropie. Ber. Bunsenges. Phys. Chem. 1987, 91, 1033–1036. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Über die Quantisierung der Entropie und die Verteilungsfunktionen von Boltzmann, Bose-Einstein und Fermi-Dirac. Ber. Bunsenges. Phys. Chem. 1988, 92, 81–84. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Die Entropie von Teilchen und ihre Quantisierung. Z. Phys. Chem. 1996, 195, 1–13. [Google Scholar] [CrossRef]
- Landsberg, P.T. Foundations of Thermodynamics. Rev. Mod. Phys. 1956, 28, 363–392. [Google Scholar] [CrossRef]
- Jauch, J.M. On a new foundation of equilibrium thermodynamics. Found. Phys. 1972, 2, 327–332. [Google Scholar] [CrossRef]
- Leff, H.S. Thermodynamic entropy: The spreading and sharing of energy. Am. J. Phys. 1996, 64, 1261–1271. [Google Scholar] [CrossRef]
- Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1–96. [Google Scholar] [CrossRef]
- Giles, R. Mathematical Foundations of Thermodynamics: International Series of Monographs on Pure and Applied Mathematics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 53. [Google Scholar]
- Boyling, J. An axiomatic approach to classical thermodynamics. Proc. R. Soc. Lond. Ser. A 1972, 329, 35–70. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: London, UK, 1958. [Google Scholar]
- Kubo, R. Statistical Mechanics; North Holland Publishing: Amsterdam, The Netherlands, 1965. [Google Scholar]
- Newburgh, R.; Leff, H.S. The Mayer-Joule Principle: The foundation of the first law of thermodynamics. Phys. Teach. 2011, 49, 484–487. [Google Scholar] [CrossRef]
- Seitz, W.; Kirwan, A., Jr. Mixed-Up-Ness or Entropy? Entropy 2022, 24, 1090. [Google Scholar] [CrossRef]
- Herrmann, F.; Pohlig, M. Which Physical Quantity Deserves the Name “Quantity of Heat”? Entropy 2021, 23, 1078. [Google Scholar] [CrossRef]
- Herrmann, F.; Hauptmann, H. Der Karlsruher Physikkurs; Aulis-Verlag Deubner: Köln, Germany, 1995. [Google Scholar]
- Herrmann, F.; Hauptmann, H.; Schwarze, H. KPK The Karlsruhe Physics Course for the Secondary School A-Level: Thermodynamics. 2019. Available online: https://publikationen.bibliothek.kit.edu/1000158188 (accessed on 30 August 2023).
- Feldhoff, A. On the thermal capacity of solids. Entropy 2022, 24, 479. [Google Scholar] [CrossRef]
- Uffink, J.; van Lith, J. Thermodynamic Uncertainty Relations. Found. Phys. 1999, 29, 655–692. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E.; Tregubovich, A.Y. Generalized uncertainty relation in thermodynamics. arXiv 2003, arXiv:gr-qc/0307018. [Google Scholar]
- Hasegawa, Y. Thermodynamic bounds via bulk-boundary correspondence: Speed limit, thermodynamic uncertainty relation, and Heisenberg principle. arXiv 2022, arXiv:2203.12421. [Google Scholar]
- de Sabbata, V.; Sivaram, C. A minimal time and time-temperature uncertainty principle. Found. Phys. Lett. 1992, 5, 183–189. [Google Scholar] [CrossRef]
- Gillies, G.T.; Allison, S.W. Experimental Test of a Time-Temperature Formulation of the Uncertainty Principle. In The Gravitational Constant: Generalized Gravitational Theories and Experiments; de Sabbata, V., Gillies, G.T., Melnikov, V.N., Eds.; Kluwer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Gillies, G.; Allison, S. Experimental Test of a Time-Temperature Formulation of the Uncertainty Principle via Nanoparticle Fluorescence. Found. Phys. Lett. 2005, 18, 65–74. [Google Scholar] [CrossRef]
- Kovtun, P.; Son, D.T.; Starinets, A.O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef] [PubMed]
- Hohm, U. Conjecture of new inequalities for some selected thermophysical properties values. J. Phys. Comm. 2019, 3, 125002. [Google Scholar] [CrossRef]
- Zimmermann, H.W. Relation between Quantum Thermodynamics and Classical Thermodynamics. Z. Phys. Chem. 2011, 225, 1–13. [Google Scholar] [CrossRef]
- Falasco, G.; Esposito, M. Dissipation-time uncertainty relation. Phys. Rev. Lett. 2020, 125, 120604. [Google Scholar] [CrossRef]
- Yan, L.L.; Zhang, J.W.; Yun, M.R.; Li, J.C.; Ding, G.Y.; Wei, J.F.; Bu, J.T.; Wang, B.; Chen, L.; Su, S.L.; et al. Experimental verification of dissipation-time uncertainty relation. Phys. Rev. Lett. 2022, 128, 050603. [Google Scholar] [CrossRef]
- Parker, M.; Jeynes, C. Entropic uncertainty principle, partition function and holographic principle derived from Liouville’s Theorem. Phys. Open 2021, 7, 100068. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C.; Catford, W.N. Halo Properties in Helium Nuclei from the Perspective of Geometrical Thermodynamics. Ann. Phys. 2022, 534, 2100278. [Google Scholar] [CrossRef]
- Maslov, V.P. Quantization of Boltzmann entropy: Pairs and correlation function. Theor. Math. Phys. 2002, 131, 666–680. [Google Scholar] [CrossRef]
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690. [Google Scholar] [CrossRef]
- Jarzynski, C. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2011, 2, 329–351. [Google Scholar] [CrossRef]
- Shiraishi, N.; Saito, K. Information-theoretical bound of the irreversibility in thermal relaxation processes. Phys. Rev. Lett. 2019, 123, 110603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rehan, K.; Li, M.; Li, J.; Chen, L.; Su, S.L.; Yan, L.L.; Zhou, F.; Feng, M. Single-atom verification of the information-theoretical bound of irreversibility at the quantum level. Phys. Rev. Res. 2020, 2, 033082. [Google Scholar] [CrossRef]
- Yan, L.L.; Wang, L.Y.; Su, S.L.; Zhou, F.; Feng, M. Verification of Information Thermodynamics in a Trapped Ion System. Entropy 2022, 24, 813. [Google Scholar] [CrossRef] [PubMed]
- Koski, J.; Sagawa, T.; Saira, O.; Yoon, Y.; Kutvonen, A.; Solinas, P.; Möttönen, M.; Ala-Nissila, T.; Pekola, J. Distribution of entropy production in a single-electron box. Nat. Phys. 2013, 9, 644–648. [Google Scholar] [CrossRef]
- Compagner, A. Thermodynamics as the continuum limit of statistical mechanics. Am. J. Phys. 1989, 57, 106–117. [Google Scholar] [CrossRef]
- Acosta, D.; de Córdoba, P.F.; Isidro, J.; Santander, J. A holographic map of action onto entropy. J. Phys. Conf. Ser. 2012, 361, 012027. [Google Scholar] [CrossRef]
- Sommerfeld, A. Das Plancksche Wirkungsquantum und seine allgemeine Bedeutung für die Molekularphysik. Phys. Z. 1911, 12, 1057–1069. [Google Scholar]
- Planck, M. Zur Dynamik bewegter Systeme. Ann. Phys. 1908, 331, 1–34. [Google Scholar] [CrossRef]
- Sackur, O. Die universelle Bedeutung des sog. elementaren Wirkungsquantums. Ann. Phys. 1913, 345, 67–86. [Google Scholar] [CrossRef]
- de Broglie, L. Max Planck und das Wirkungsquantum. Phys. Blätter 1948, 4, 138–142. [Google Scholar] [CrossRef]
- Balibar, F.; Lévy-Leblond, J.M. Quantique—Rudiments; Edition du CNRS, InterEditions: Paris, France, 1984. [Google Scholar]
- Hushwater, V. A Path from the Quantization of the Action Variable to Quantum Mechanical Formalism. Found. Phys. 1998, 28, 167–184. [Google Scholar] [CrossRef]
- Hushwater, V. Quantum Mechanics from the Quantization of the Action Variable. Fortschr. Phys. 1998, 46, 863–871. [Google Scholar] [CrossRef]
- Sergeenko, M. Quantization of the classical action and eigenvalue problem. arXiv 2002, arXiv:quant-ph/0211099. [Google Scholar]
- Pietschmann, H. Quantenmechanik verstehen: Eine Einführung in den Welle-Teilchen-Dualismus für Lehrer und Studierende; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Curtis, L.J.; Ellis, D.G. Use of the Einstein–Brillouin–Keller action quantization. Am. J. Phys. 2004, 72, 1521–1523. [Google Scholar] [CrossRef]
- Bucher, M. Rise and fall of the old quantum theory. arXiv 2008, arXiv:0802.1366. [Google Scholar]
- Curtis, L.J. A 21st century perspective as a primer to introductory physics. Eur. J. Phys. 2011, 32, 1259. [Google Scholar] [CrossRef]
- Bartelmann, M.; Feuerbacher, B.; Krüger, T.; Lüst, D.; Rebhan, A.; Wipf, A. Theoretische Physik 3 | Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zagoskin, A. Quantum Theory: A Complete Introduction; Teach Yourself: Boston, MA, USA, 2015. [Google Scholar]
- Capellmann, H. The Development of Elementary Quantum Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Boughn, S. Wherefore Quantum Mechanics? arXiv 2019, arXiv:1910.08069. [Google Scholar]
- Khrennikov, A. Is the Devil in h? Entropy 2021, 23, 632. [Google Scholar] [CrossRef]
- Sergeenko, M.N. General solution of the Schrödinger equation. arXiv 2022, arXiv:2201.02199. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hohm, U.; Schiller, C. Testing the Minimum System Entropy and the Quantum of Entropy. Entropy 2023, 25, 1511. https://doi.org/10.3390/e25111511
Hohm U, Schiller C. Testing the Minimum System Entropy and the Quantum of Entropy. Entropy. 2023; 25(11):1511. https://doi.org/10.3390/e25111511
Chicago/Turabian StyleHohm, Uwe, and Christoph Schiller. 2023. "Testing the Minimum System Entropy and the Quantum of Entropy" Entropy 25, no. 11: 1511. https://doi.org/10.3390/e25111511
APA StyleHohm, U., & Schiller, C. (2023). Testing the Minimum System Entropy and the Quantum of Entropy. Entropy, 25(11), 1511. https://doi.org/10.3390/e25111511