Large Coherent States Formed from Disordered k-Regular Random Graphs
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scholes, G.D.; Fleming, G.R.; Chen, L.X.; Aspuru-Guzik, A.; Buchleitner, A.; Coker, D.F.; Engel, G.S.; van Grondelle, R.; Ishizaki, A.; Jonas, D.M.; et al. Using coherence to enhance function in chemical and biophysical systems. Nature 2017, 543, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Yuwen, S. Coherence measure: Logarithmic coherence number. Phys. Rev. A 2019, 99, 022340. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed]
- Levi, F.; Mintert, F. A quantitative theory of coherent delocalization. New J. Phys. 2014, 16, 033007. [Google Scholar] [CrossRef]
- Scholes, G.D. A Molecular Perspective on Quantum Information. Proc. R. Soc. A 2023, in press.
- Pullerits, T.; Chachisvilis, M.; Sundstrom, V. Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 1996, 100, 10787–10792. [Google Scholar] [CrossRef]
- Lim, S.; Bjorklund, T.; Spano, F.; Bardeen, C. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 2004, 92, 107402. [Google Scholar] [CrossRef]
- Fidder, H.; Knoester, J.; Wiersma, D. Optical properties of disordermolecular aggregates:a numerical study. J. Chem. Phys. 1991, 95, 7880–7890. [Google Scholar] [CrossRef]
- Smyth, C.; Fassioli, F.; Scholes, G.D. Measures and implications of electronic coherence in photosynthetic light-harvesting. Phil. Trans. R. Soc. A 2012, 370, 3728–3749. [Google Scholar] [CrossRef]
- Scholes, G.D. Polaritons and excitons: Hamiltonian design for enhanced coherence. Proc. R. Soc. A 2020, 476, 2242. [Google Scholar] [CrossRef]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef] [PubMed]
- Kamin, F.H.; Tabesh, F.T.; Salimi, S.; Kheirandish, F. The resource theory of coherence for quantum channels. Quantum Inf. Process. 2020, 19, 210. [Google Scholar] [CrossRef]
- Streltsov, A.; Kampermann, H.; Woelk, S.; Gessner, M.; Bruss, D. Maximal coherence and the resource theory of purity. New J. Phys. 2018, 20, 053058. [Google Scholar] [CrossRef]
- Bischof, F.; Kampermann, H.; Bruss, D. Resource Theory of Coherence Based on Positive-Operator-Valued Measures. Phys. Rev. Lett. 2019, 123, 110402. [Google Scholar] [CrossRef]
- Streltsov, A.; Rana, S.; Boes, P.; Eisert, J. Structure of the Resource Theory of Quantum Coherence. Phys. Rev. Lett. 2017, 119, 140402. [Google Scholar] [CrossRef] [PubMed]
- Bosyk, G.M.; Bellomo, G.; Holik, F.; Freytes, H.; Sergioli, G. Optimal common resource in majorization-based resource theories. New J. Phys. 2019, 21, 083028. [Google Scholar] [CrossRef]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X.K.; Xiao, J.; Chow, P.C.Y.; Ren, M.; Kupgan, G.; Jiao, X.; Chan, C.C.S.; Du, X.; Xia, R.; et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 2020, 11, 3943. [Google Scholar] [CrossRef]
- Tamura, H.; Burghardt, I. Ultrafast Charge Separation in Organic Photovoltaics Enhanced by Charge Delocalization and Vibronically Hot Exciton Dissociation. J. Am. Chem. Soc. 2013, 135, 16364–16367. [Google Scholar] [CrossRef]
- Sneyd, A.; Beljonne, D.; Rao, A. A New Frontier in Exciton Transport: Transient Delocalization. J. Phys. Chem. Lett. 2022, 13, 6820–6830. [Google Scholar] [CrossRef]
- Balzer, D.; Kassal, I. Even and little Delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics. Sci. Adv. 2022, 8, eabl9692. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; Carof, A.; Ellis, M.; Yang, H.; Ziogos, O.G.; Ghosh, S.; Blumberger, J. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 2019, 10, 3843. [Google Scholar] [CrossRef]
- Fassioli, F.; Oblinsky, D.; Scholes, G. Designs for molecular circuits that use electronic coherence. Faraday Discuss. 2012, 163, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Tempelaar, R.; Stradomska, A.; Knoester, J.; Spano, F. Anatomy of an exciton: Vibrational distortion and exciton coherence in H- and J-aggregates. J. Phys. Chem. B 2013, 117, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Alvertis, A.; Huber, J.B.; Engel, E.; Sharifzadeh, S.; Neaton, J.B. Phonon-Induced Localization of Excitons in Molecular Crystals from First Principles. Phys. Rev. Lett. 2023, 130, 086401. [Google Scholar] [CrossRef]
- Haken, H. Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 1975, 47, 67–121. [Google Scholar] [CrossRef]
- Fano, U. A common mechanism of collective phenomena. Rev. Mod. Phys. 1992, 64, 313–319. [Google Scholar] [CrossRef]
- Strogatz, S. Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life; Hyperion: New York, NY, USA, 2003. [Google Scholar]
- Strogatz, S.H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 2000, 143, 1–20. [Google Scholar] [CrossRef]
- Acebrón, J.; Bonilla, L.; Pérez-Vicente, C.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Peron, T.K.D.; Ji, P.; Kurths, J. The Kuramoto model: In complex networks. Phys. Rep. 2016, 610, 1–98. [Google Scholar] [CrossRef]
- Ha, S.Y.; Ko, D.; Park, J.; Zhang, X. Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 2016, 3, 209–267. [Google Scholar] [CrossRef] [PubMed]
- George, N.; Bullo, F.; Campàs, O. Connecting individual to collective cell migration. Sci. Rep. 2017, 7, 9720. [Google Scholar] [CrossRef]
- Uchinda, N. Many-body theory of synchronization by long-range interactions. Phys. Rev. Lett. 2011, 106, 064101. [Google Scholar] [CrossRef]
- Manzano, G.; Galve, F.; Giorgi, G.L.; Hernández-Garcia, E.; Zambrini, R. Synchronization, quantum correlations and entanglement in oscillator networks. Sci. Rep. 2013, 3, 1439. [Google Scholar] [CrossRef]
- O’Keeffe, K.P.; Hong, H.; Strogatz, S.H. Oscillators that sync and swarm. Nat. Commun. 2017, 8, 1504. [Google Scholar] [CrossRef]
- Buhl, J.; Sumpter, D.J.T.; Couzin, I.D.; Hale, J.J.; Despland, E.; Miller, E.R.; Simpson, S.J. From Disorder to Order in Marching Locusts. Science 2006, 312, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H.; Abrams, D.; McRobie, A.; Eckardt, B.; Ott, E. Crowd synchrony on the Millennium bridge. Nature 2005, 438, 43–44. [Google Scholar] [CrossRef]
- Theurer, T.; Killoran, N.; Egloff, D.; Plenio, M.B. Resource Theory of Superposition. Phys. Rev. Lett. 2017, 119, 230401. [Google Scholar] [CrossRef]
- Bosyk, G.M.; Losada, M.; Massri, C.; Freytes, H.; Sergioli, G. Generalized coherence vector applied to coherence transformations and quantifiers. Phys. Rev. A 2021, 103, 012403. [Google Scholar] [CrossRef]
- Scholes, G.D.; Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 2006, 5, 683–696. [Google Scholar] [CrossRef]
- Bardeen, C.J. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 2014, 65, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Janson, S.; Łuczak, T.; Ruciński, A. Random Graphs; Wiley Interscience: New York, NY, USA, 2000. [Google Scholar]
- Bollobás, B. Random Graphs; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bollobás, B. The evolution of random graphs. Trans. Am. Math. Soc. 1984, 286, 257–274. [Google Scholar] [CrossRef]
- Luczak, T.; Pittel, B.; Wierman, J.C. The structure of a random graph at the point of the phase transition. Trans. Am. Math. Soc. 1994, 341, 721–748. [Google Scholar] [CrossRef]
- Kassabov, M.; Strogatz, S.H.; Townsend, A. A global synchronization theorem for oscillators on a random graph. Chaos 2022, 32, 093119. [Google Scholar] [CrossRef] [PubMed]
- Scholes, G.D. Limits of exciton delocalization in molecular aggregates. Faraday Discuss. 2020, 221, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Scholes, G.D. The Kuramoto-Lohe model and collective absorption of a photon. Proc. R. Soc. A 2022, 478, 2265. [Google Scholar] [CrossRef]
- Kassabov, M.; Strogatz, S.H.; Townsend, A. Sufficiently dense Kuramoto networks are globally synchronizing. Chaos 2021, 31, 073135. [Google Scholar] [CrossRef]
- Townsend, A.; Stillman, M.; Strogatz, S.H. Dense networks that do not synchronize and sparse ones that do. Chaos 2020, 30, 083142. [Google Scholar] [CrossRef]
- Chung, F.; Lu, L.; Vu, V. Spectra of random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 2003, 100, 6313–6318. [Google Scholar] [CrossRef]
- McKay, B. The expected eigenvalue distribution of a large regular graph. Lin. Alg. Appl. 1981, 40, 203–216. [Google Scholar] [CrossRef]
- Lubotsky, A. Expander Graphs in Pure and Applied Mathematics. Bull. Amer. Math. Soc. 2012, 49, 113–162. [Google Scholar] [CrossRef]
- Hoory, S.; Linial, N.; Wigderson, A. Expander Graphs and their Applications. Bull. Amer. Math. Soc. 2006, 43, 439–561. [Google Scholar] [CrossRef]
- Alon, N. Explicity expanders of every degree and size. Combinatorica 2021, 41, 447–463. [Google Scholar] [CrossRef]
- Alon, N. Eigenvalues adn Expanders. Combinatorica 1986, 6, 83–96. [Google Scholar] [CrossRef]
- Nilli, A. On the second eigenvalue of a graph. Discr. Math. 1991, 91, 207–210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholes, G.D. Large Coherent States Formed from Disordered k-Regular Random Graphs. Entropy 2023, 25, 1519. https://doi.org/10.3390/e25111519
Scholes GD. Large Coherent States Formed from Disordered k-Regular Random Graphs. Entropy. 2023; 25(11):1519. https://doi.org/10.3390/e25111519
Chicago/Turabian StyleScholes, Gregory D. 2023. "Large Coherent States Formed from Disordered k-Regular Random Graphs" Entropy 25, no. 11: 1519. https://doi.org/10.3390/e25111519
APA StyleScholes, G. D. (2023). Large Coherent States Formed from Disordered k-Regular Random Graphs. Entropy, 25(11), 1519. https://doi.org/10.3390/e25111519