Nonequilibrium Effects on Information Recoverability of the Noisy Channels
Abstract
:1. Introduction
2. Information Dynamics
2.1. Physical Settings
2.2. Markovian Dynamics of Sequential Information Transfer
3. Information Recoverability
3.1. Decision Rules of Information Recovery
3.2. Information Recoverability of Noisy Channels
3.3. Information Transfer Rate Enhanced by Recoverability
4. Nonequilibrium Information Dynamics
5. Nonequilibrium Information Thermodynamics
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Koski, J.V.; Kutvonen, A.; Khaymovich, I.M.; Ala-Nissila, T.; Pekola, J.P. On-Chip Maxwell’s Demon as an Information-Powered Refrigerator. Phys. Rev. Lett. 2015, 115, 260602. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.; Jones, N.S.; Ten Wolde, P.R.; Ouldridge, T.E. Biochemical Machines for the Interconversion of Mutual Information and Work. Phys. Rev. Lett. 2017, 118, 028101. [Google Scholar] [CrossRef]
- Sagawa, T.; Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 2012, 11, 180602. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.M.; Esposito, M. Thermodynamics with Continuous Information Flow. Phys. Rev. X 2014, 4, 031015. [Google Scholar] [CrossRef]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Strong, S.P.; Koberle, R.; Van Steveninck, R.R.D.R.; Bialek, W. Entropy and Information in Neural Spike Trains. Phys. Rev. Lett. 1998, 80, 197. [Google Scholar] [CrossRef]
- Tkačik, G.; Bialek, W. Information processing in living systems. arXiv 2016, arXiv:1412.8752. [Google Scholar] [CrossRef]
- Petkova, M.D.; Tkačik, G.; Bialek, W.; Wieschaus, E.F.; Gregor, T. Optimal decoding of information from a genetic network. arXiv 2016, arXiv:1612.08084. [Google Scholar]
- Mark, B.L.; Ephraim, Y. Explicit Causal Recursive Estimators for Continuous-Time Bivariate Markov Chains. IEEE Trans. Signal Process. 2014, 62, 2709–2718. [Google Scholar] [CrossRef]
- Ephraim, Y.; Mark, B.L. Bivariate Markov Processes and Their Estimation. Found. Trends Signal Process. 2013, 6, 1–95. [Google Scholar] [CrossRef]
- Hartich, D.; Barato, A.C.; Seifert, U. Stochastic thermodynamics of bipartite systems: Transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Stat. Mech. 2014, 2014, P02016. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, J. Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production. Entropy 2017, 19, 678. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Wang, E.K. Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 2008, 105, 12271–12276. [Google Scholar] [CrossRef]
- Wang, J. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv. Phys. 2015, 64, 1–137. [Google Scholar] [CrossRef]
- Li, C.; Wang, E.; Wang, J. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. J. Chem. Phys. 2012, 136, 194108. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley: New York, NY, USA, 2003. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef]
- Jacod, J.; Protter, P. Probability Essentials; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Wu, S.J.; Chu, M.T. Markov chains with memory, tensor formulation, and the dynamics of power iteration. Appl. Math. Comput. 2017, 303, 226–239. [Google Scholar] [CrossRef]
- Gray, R.; Kieffer, J. Mutual information rate, distortion, and quantization in metric spaces. IEEE Trans. Inf. Theory 1980, 26, 412–422. [Google Scholar] [CrossRef]
- Maes, C.; Redig, F.; van Moffaert, A. On the definition of entropy production, via examples. J. Math. Phys. 2000, 41, 1528–1554. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, J. Nonequilibrium Enhanced Classical M easurement and Estimation. J. Stat. Phys. 2022, 189, 10. [Google Scholar] [CrossRef]
- Yan, L.; Ge, X. Entropy-Based Energy Dissipation Analysis of Mobile Communication Systems. arXiv 2023, arXiv:2304.06988. [Google Scholar] [CrossRef]
- Tasnim, F.; Freitas, N.; Wolpert, D.H. The fundamental thermodynamic costs of communication. arXiv 2023, arXiv:2302.04320. [Google Scholar]
- Ball, F.; Yeo, G.F. Lumpability and Marginalisability for Continuous-Time Markov Chains. J. Appl. Probab. 1993, 30, 518–528. [Google Scholar] [CrossRef]
- Mandal, D.; Jarzynski, C. Work and information processing in a solvable model of Maxwell’s demon. Proc. Natl. Acad. Sci. USA 2012, 109, 11641–11645. [Google Scholar] [CrossRef]
- Barato, A.C.; Seifert, U. Unifying three perspectives on information processing in stochastic thermodynamics. Phys. Rev. Lett. 2014, 112, 219–233. [Google Scholar] [CrossRef]
- Gallager, R.G. Information Theory and Reliable Communication; Wiley: New York, NY, USA, 1968. [Google Scholar]
- Gaspard, P. Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 2004, 117, 599–615. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley&Sons: Hoboken, NJ, USA, 2006; ISBN 13 978-0-471-24195-9. [Google Scholar]
- Verdu, S.; Han, T.S. A general formula for channel capacity. IEEE Trans. Inf. Theory 1994, 40, 1147–1157. [Google Scholar] [CrossRef]
- Barato, A.C.; Hartich, D.; Seifert, U. Rate of Mutual Information Between Coarse-Grained Non-Markovian Variables. J. Stat. Phys. 2013, 153, 460–478. [Google Scholar] [CrossRef]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Holliday, T.; Goldsmith, A.; Glynn, P. Capacity of finite state channels based on Lyapunov exponents of random matrices. IEEE Trans. Inf. Theory 2006, 52, 3509–3532. [Google Scholar] [CrossRef]
- Lan, G.; Sartori, P.; Neumann, S.; Sourjik, V.; Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 2012, 8, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic Gene Expression in a Single Cell. Science 2002, 297, 1183–1186. [Google Scholar] [CrossRef]
- Detwiler, P.B.; Ramanathan, S.; Sengupta, A.; Shraiman, B.I. Engineering aspects of enzymatic signal transduction: Photoreceptors in the retina. Biophys. J. 2000, 79, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- Tkacik, G.; Callan, C.G., Jr.; Bialek, W. Information flow and optimization in transcriptional control. Proc. Natl. Acad. Sci. USA 2008, 105, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Tkacik, G.; Callan, C.G., Jr.; Bialek, W. Information capacity of genetic regulatory elements. Phys. Rev. E 2008, 78, 011910. [Google Scholar] [CrossRef] [PubMed]
- Ziv, E.; Nemenman, I.; Wiggins, C.H. Optimal signal processing in small stochastic biochemical networks. PLoS ONE 2007, 2, e1077. [Google Scholar] [CrossRef]
- Moor, A.L.; Zechner, C. Dynamic Information Transfer in Stochastic Biochemical Networks. arXiv 2022, arXiv:2208.04162v1. [Google Scholar] [CrossRef]
- Tostevin, F.; Ten Wolde, P.R. Mutual Information between Input and Output Trajectories of Biochemi cal Networks. Phys. Rev. Lett. 2009, 102, 218101. [Google Scholar] [CrossRef]
(a) | (b) | (c) | (d) | |
---|---|---|---|---|
p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Li, R.; Wang, J. Nonequilibrium Effects on Information Recoverability of the Noisy Channels. Entropy 2023, 25, 1589. https://doi.org/10.3390/e25121589
Zeng Q, Li R, Wang J. Nonequilibrium Effects on Information Recoverability of the Noisy Channels. Entropy. 2023; 25(12):1589. https://doi.org/10.3390/e25121589
Chicago/Turabian StyleZeng, Qian, Ran Li, and Jin Wang. 2023. "Nonequilibrium Effects on Information Recoverability of the Noisy Channels" Entropy 25, no. 12: 1589. https://doi.org/10.3390/e25121589
APA StyleZeng, Q., Li, R., & Wang, J. (2023). Nonequilibrium Effects on Information Recoverability of the Noisy Channels. Entropy, 25(12), 1589. https://doi.org/10.3390/e25121589