Self-Organisation of Prediction Models †
Abstract
:1. Introduction
Für einen Organismus muß die Welt voraussagbar sein, sonst kann er in ihr nicht leben. (English: “For an organism the world must be predictable, otherwise it cannot live therein.”)Irinäus Eibl-Eibesfeldt, 1998 [1]
The theory of life is a theory for the generation of information.Manfred Eigen, 2013 [2]
- (i)
- Symbols need to emerge from non-symbolic, structural information processing;
- (ii)
- Sensors need to emerge which convert received structural information into symbolic information;
- (iii)
- Experience in the form of symbolic information needs to be stored in memory;
- (iv)
- Symbols need to be combined in networks to form symbol-processing models;
- (v)
- Symbols produced by models represent the evaluation result of the processed experience;
- (vi)
- Decision-making models convert symbolic values back into structural information of activity.
2. Symbols and Models
3. Causality and Finality
4. Physical and Symbolic Decisions
5. Structural and Symbolic Information
6. Properties of the Ritualisation Transition
- -
- “The gradual change of a useful action into a symbol and then into a ritual; or in other words, the change by which the same act which first subserved a definite purpose directly comes later to subserve it only indirectly (symbolically) and then not at all” (Huxley 1914) [108];
- -
- A process by which behavioural or physical forms, or both, that had originally developed to serve certain different purposes for communication within a population (Lorenz 1970) [109];
- -
- The modification of an animal behavioural pattern to a pure symbolic activity (Eibl-Eibesfeldt 1970) [110];
- -
- The development of signal–activity from use–activity (Tembrock 1977) [111];
- -
- The self-organised emergence of systems capable of processing symbolic information (Feistel and Ebeling 2011) [12].
- (i)
- Symbolic information systems possess a new symmetry, the carrier invariance. Information may, loss-free, be copied to other carriers or multiplied in the form of an unlimited number of physical instances. The information content is independent of the physical carrier system used.
- (ii)
- Symbolic information systems possess a new symmetry, the coding invariance. The functionality of the processing system is unaffected by the substitution of symbols with other symbols, as long as unambiguous bidirectional conversion remains possible. In particular, the stock of symbols can be extended with the addition of new symbols or the differentiation of existing symbols. At higher functional levels, code invariance applies similarly also to the substitution of groups of symbols, synonymous words, or of equivalent languages.
- (iii)
- Within the physical relaxation time of the carrier structure, discrete symbols represent quanta of information that do not degrade and can be refreshed unlimitedly.
- (iv)
- Redundant copies of symbolic information may be carried along for error correction in cases of the loss or damage of the original.
- (v)
- Imperfect functioning or external interference may destroy symbolic information but only biological processing systems can generate new or recover lost information.
- (vi)
- Symbolic information systems consist of complementary physical components that are capable of producing the structures of each of the symbols in an arbitrary sequence upon writing, of keeping the structures intact over the duration of transmission or storage, and of detecting each of those structures upon reading the message. If the stock of symbols is subject to evolutionary change, a consistent co-evolution of all components is required.
- (vii)
- Symbolic information is an emergent property; its governing laws are beyond the framework of physics, even though the supporting structures and processes do not violate physical laws.
- (viii)
- Symbolic information is extracted from structural information by observation or measurement processes.
- (ix)
- Symbolic information has a meaning or purpose beyond the scope of physics, which becomes revealed by conversion to structural information, such as by symbolic decisions.
- (x)
- In their structural information, the constituents of the symbolic information system preserve a frozen history (“fossils”) of their evolutionary pathway.
- (xi)
- Symbolic information processing is an irreversible, non-equilibrium processes that produces entropy and requires a free-energy supply.
- (xii)
- Symbolic information is encoded in the form of the structural information of its carrier system. The source, transmitter, and destination represent and transform physical structures.
- (xiii)
- Symbolic information exists only in the realm of life.
- (i)
- Structural information is inherent to its carrier substance or process. Information cannot loss-free be copied to any other carrier or identically multiplied in the form of additional physical instances. The physical carrier is an integral constituent of the information, meaning and structure cannot be separated from one another. The state of the physical context of the system is an integral part of the information.
- (ii)
- There is no invariance of structural information with respect to structure transformations. Different structures represent different structural information.
- (iii)
- Structural information emerges and exists on its own, without being produced or supported by any kind of separate information source. No coding rules are involved when the structure is formed by natural processes.
- (iv)
- Over the relaxation time of the carrier structure, structural information degrades systematically as a consequence of the Second Law, and disappears when the equilibrium state is approached.
- (v)
- Internal physical processes or external interference may destroy structural information; it cannot be regenerated or recovered. Periodic processes can rebuild similar structures but never exactly the same, in particular because the surrounding world will never be exactly the same again at any later point of time.
- (vi)
- Structural information is not represented in the form of codes. No particular coding rule or language is required or distinguished to decipher a structure.
- (vii)
- Structural information is a physical property; it is represented by the spatial and temporal configuration of matter, and its governing laws are the laws of physics.
- (viii)
- Structural information is of a physical nature and is independent of life.
7. Discussion
- -
- Phylogenetic experience: When Darwin (1859) [73] wrote his famous book “On the Origin of Species”, he mentioned, in his Chapter 1, various examples of the variability of phenotypic properties between parents and offspring: “When among individuals … any very rare deviation … appears in the parent … and it reappears in the child, the mere doctrine of chances almost compels us to attribute its reappearance to inheritance. … Perhaps the correct way of viewing … would be, to look at the inheritance … as a rule, and non-inheritance as the anomaly. The laws governing inheritance are for the most part unknown”. Despite that ignorance, only a few years later, Mendel’s (1866) [118] empirical inheritance rules went largely unnoticed by the scientific community. It took another century until Watson and Crick (1953) [119] as well as Nirenberg and Matthaei (1961) [120] revealed the molecular symbolic memory behind biological inheritance, known today as the “genetic code”. In this paper, genetic information is considered as an inherited prediction model, self-organised previously in the course of Darwinian selection by the long and unbroken track of successful ancestors, this way, keeping their accumulated phylogenetic experience available for their offspring as a predicted instruction set for the offspring’s subsequent survival and multiplication. This process may be regarded as the Darwinian evolution of prediction models in the sense of Dawkins’ (1976) [121] “selfish genes”.
- -
- Ontogenetic experience: When Pavlov, in 1905, measured the salivation of a dog in a lab, he noticed that, already, the sound of the walking technician started the dog’s mouth to water in expectation of the food the same person had always been providing. This classical conditioning (Denny-Brown 1928) [122] is controlled by a mental prediction model that had been established before by the repeated recognition of correlated events during the individual ontogenetic experience in the past. To make this happen, sensual impressions must be recorded symbolically in memory. Triggered by a repeated event, this information must be recalled and processed by the model in order to predict and await the yet missing events of the formerly observed scenario. “Brains are … essentially prediction machines” (Clark 2013 [123]: p. 181). The concept of mental models was developed by Craik (1943) [47].
- -
- Scientific prediction laws: When Clausius (1876) [17] studied the cyclic thermal processes of heat engines, he mutually compared numerous measured values of heat supply, , at temperatures, . He found that cycles with are technically impossible: “Die algebraische Summe aller in einem Kreisprocesse vorkommenden Verwandlungen kann nur positiv oder als Grenzfall Null sein” (Clausius (1876) [17]: p. 223: English: “The algebraic sum of all transformations in a cyclic process can only be positive or, as a limiting case, zero.”). As a fundamental theorem, he concluded that “ein Wärmeübergang aus einem kälteren in einen wärmeren Körper kann nicht ohne Compensation stattfinden“ (Clausius (1876) [17]: p. 82, 364: English: “Heat transfer from a colder to a warmer body cannot occur without compensation.”). This “natural” law is a prediction model for, say, the maximum efficiency of any modern heat pump. Clausius (1865 [16]: p. 390, 1876: p. 94, 111) proposed a new thermodynamic state quantity, , termed “entropy” (“Verwandlung”, transformation, greek “τροπή”) by him (Feistel and Ebeling 2011, 2016) [12,41]. His most famous prediction was: “Die Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu” (Clausius (1865) [16]: p. 400: English: “The energy of the world is constant. The entropy of the world aspires to a maximum.”). Physical “natural” laws are symbolically formulated human models (Feistel 2023) [14], derived from past observations in order to predict the results of future observations or measurements.
- -
- Observation–prediction–action cycle: Brahe’s meticulous observation of stars between 1586 and 1597 enabled Kepler to discover his pioneering laws of planetary motion, published in the books “Astronomia nova” of 1609 and “Harmonices mundi” of 1619. Kepler’s laws allowed successful predictions of the solar transits of Mercury in 1631 and of Venus in 1639, and later, even the discovery of Neptune in 1846. In 1687, Newton could demonstrate that his fundamental physical laws of bodily motion and of universal gravity were sufficient to correctly derive Kepler’s findings mathematically. In remote space regions never directly experienced by humans before, predictions by those laws gave rise to the first successful flight of an artificial celestial body, “Sputnik”, in 1957, confirming the merely symbolic predictions of astronomers in the form of structural information. Newton’s dynamical differential equations offer more comprehensive predictions than Kepler’s conservation laws of energy and angular momentum provide. “The ultimate goal of celestial mechanics [was] to resolve the great problem of determining if Newton’s law alone explains all astronomical phenomena” (Poincaré and Goroff 1993 [124]: p. I17).
- -
- Causal prediction models: “Mathematically, the law of causality is expressed by the fact that physical quantities obey differential equations of a certain kind. The causal law of classical physics implies that the knowledge of the state of a closed system at some point of time determines its behaviour for all of its future” (Born 1966 [125]: p. 7). Causality is a key element of the human mental model of naïve realism. Causality does not exist in reality (Russell 1919 [63]: p. 180), nor can it be observed: “Through its sensational properties, no object may ever reveal the causes that produced it nor the effects that will result from it” (Hume 1758 [62]: p. 44). However, causality is an unrivalled human mental prediction tool (Orcutt 1952) [126]. The historical success of causal mental models made humans addicted to causal explanations for their personal observations, such as by superstition, religion, or science (Planck 1948a [127]: p. 23, Feistel 2023 [14]). “The human brain is the most advanced tool ever devised for managing causes and effects. … Causal explanations, not dry facts, make up the bulk of our knowledge” (Pearl and Mackenzie 2019 [48]: p. 2, 24). “We struggle for attributing cause and effect. Seeing events causally connected is an outstanding strategy to master our daily life“ (Mast 2020 [128]: p. 32).
- -
- Mental prediction models: The neuronally implemented, inherited prediction model of naïve realism emerged through self-organisation in the course of Darwinian evolution (Hoffman 2020, Feistel 2023) [14,51]. By introspection, Kant (1956) [54] painted a detailed picture of human naïve realism. Eighty years before Darwin (1859) [73], lacking a better explanation, Kant described causality as an a priori principle of reason rather than an empirical conclusion from phylogenetic experience. The alternative advantages either of exploiting intergenerational, phylogenetic experience stored in genetic information, or of fast and flexible individual, ontogenetic experience stored in brain memory, became combined through the socially distributed prediction models of science and technology of humans, permitted by the self-organisation of spoken and written language (Logan 1986, Pinker 1994, Deacon 1997) [39,129,130]. Sagan (1978 [131]: p. 39) regarded this kind of accumulated symbolic information as an “extrasomatic-cultural” one.
- -
- Non-causal prediction models: Scientific prediction models are not necessarily causal ones. For the description of technical or natural processes, for example, the quantitative knowledge of certain properties of physical objects may be required. Typically, a finite set of such properties is carefully measured and symbolically tabulated, similar to Brahe’s star-gazing, and subsequently represented mathematically by a continuous function, similar to Kepler’s and Newton’s laws, which predicts the properties under any other, not yet measured conditions. This way, as a special case, the properties of water, seawater, ice, and humid air are described in the form of empirical thermodynamic potentials by the international standard TEOS-10 [132], the “Thermodynamic Equation of Seawater—2010”, for use in numerical models for climate, oceanography, or desalination (IOC et al., 2010, Feistel 2018, Harvey et al., 2023) [133,134,135]. Such predicted property values should always be associated with estimated uncertainties (GUM 2008, Willink 2013, Feistel et al., 2016) [44,136,137]. The method of mathematical inter- and extrapolation, generalising locally observed situations to previously unexplored ones, is a powerful non-causal mental prediction tool that likely evolved from first geometric measurements in agriculture (Hilbert 1903) [138] and is still successfully applied in the latest science.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Self-Organisation and Phase Transitions
Appendix B. A Model for the Ritualisation Transition to Early Life
Appendix C. Binary Relations, Directed Graphs, and Non-Negative Matrices
Appendix D. Order Relations and Semi-Order Relations
Appendix E. Groups and Semi-Groups of Operators
- (i)
- BA and AA are also elements of G;
- (ii)
- There exists a unity element E such that AE = EA = A for each element A, especially EE = E;
- (iii)
- The associative law holds A(BC) = (AB)C;
- (iv)
- To each element A, an inverse element X = A−1 exists, such that AX = A A−1 = A−1 A = E.
References
- Eibl-Eibesfeldt, I. Ernst Haeckel—Der Künstler im Wissenschaftler. In Kunstformen der Natur von Ernst Haeckel (1904); Haeckel, E., Ed.; Neudruck: München, Germany, 1988; pp. 19–30. [Google Scholar]
- Eigen, M. From Strange Simplicity to Complex Familiarity: A Treatise on Matter, Information, Life and Thought; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Dawkins, R. The Blind Watchmaker; W.W. Norton & Co.: New York, NY, USA, 1996. [Google Scholar]
- Donald, M. Triumph des Bewusstseins. Klett-Cotta, Stuttgart. American Original (2001): A Mind so Rare: The Evolution of Human Consciousness; W.W. Norton & Co.: New York, NY, USA, 2008. [Google Scholar]
- Eigen, M. Selforganization of Matter and the Evolution of Biological Macromolecules. Die Naturwissenschaften 1971, 58, 465–523. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M. Wie entsteht Information? Prinzipien der Selbstorganisation in der Biologie. Berichte Bunsenges. Phys. Chem. 1976, 80, 1059–1081. [Google Scholar] [CrossRef]
- Eigen, M. Ursprung und Evolution des Lebens auf molekularer Ebene. In Evolution of Order and Chaos in Physics, Chemistry, and Biology, Proceedings of the International Symposium on Synergetics at Schloß Elmau, Bavaria, Germany, 26 April–1 May 1982; Haken, H., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; pp. 6–23. [Google Scholar] [CrossRef]
- Eigen, M. The origin of genetic information. Orig. Life Evol. Biosph. 1994, 24, 241–262. [Google Scholar] [CrossRef]
- Eigen, M.; Schuster, P. The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle. Die Naturwissenschaften 1977, 64, 541–565. [Google Scholar] [CrossRef]
- Botton-Amiot, G.; Martinez, P.; Sprecher, S.G. Associative learning in the cnidarian Nematostella vectensis. Proc. Natl. Acad. Sci. USA 2023, 120, e2220685120. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, W.; Feistel, R. Chaos und Kosmos; Spektrum-Verlag: Wiesbaden, Germany, 1994. [Google Scholar]
- Feistel, R.; Ebeling, W. Physics of Self-Organization and Evolution; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Feistel, R. Self-organisation of symbolic information. Eur. Phys. J. Spec. Top. 2017, 226, 207–228. [Google Scholar] [CrossRef]
- Feistel, R. On the Evolution of Symbols and Prediction Models. Biosemiotics 2023, 16, 311–371. [Google Scholar] [CrossRef]
- Brillouin, L. Science and Information Theory; Dover Publications: Mineola, NY, USA, 2013. [Google Scholar]
- Clausius, R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Ann. Der Phys. 1865, 201, 353–400. [Google Scholar] [CrossRef]
- Clausius, R. Die Mechanische Wärmetheorie; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1876. [Google Scholar]
- Planck, M. Vorlesungen über die Theorie der Wärmestrahlung; Johann Ambrosius Barth: Leipzig, Germany, 1906. [Google Scholar]
- Planck, M. Theorie der Wärmestrahlung; Johann Ambrosius Barth: Leipzig, Germany, 1966. [Google Scholar]
- Feistel, R.; Wagner, W. A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 2006, 35, 1021–1047. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1964. [Google Scholar]
- Feistel, R. Distinguishing between Clausius, Boltzmann and Pauling Entropies of Frozen Non-Equilibrium States. Entropy 2019, 21, 799. [Google Scholar] [CrossRef]
- Nöth, W. Handbuch der Semiotik, 2nd ed.; J.B. Metzler: Stuttgart, Germany, 2000. [Google Scholar]
- Kull, K. Choosing and learning: Semiosis means choice. Sign Syst. Stud. 2018, 46, 452–466. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics; Wiley: New York, NY, USA, 1948. [Google Scholar]
- Kämmerer, W. Einführung in Die Mathematischen Methoden der Kybernetik; Akademie-Verlag: Berlin, Germany, 1974. [Google Scholar]
- Kämmerer, W. Kybernetik; Akademie-Verlag: Berlin, Germany, 1977. [Google Scholar]
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 59, 433–460. Available online: https://www.jstor.org/stable/225129 (accessed on 28 September 2023). [CrossRef]
- Feistel, R. Ritualisation und die Selbstorganisation der Information. In Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften, Band 1; Niedersen, U., Pohlmann, L., Eds.; Duncker & Humblot: Berlin, Germany, 1990. [Google Scholar] [CrossRef]
- Feistel, R. Chapter 4: Emergence of Symbolic Information by the Ritualisation Transition. In Information Studies and the Quest for Transdisciplinarity; Burgin, M., Hofkirchner, W., Eds.; World Scientific: Singapore, 2017; pp. 115–164. [Google Scholar] [CrossRef]
- Kull, K. Biosemiotics and Biophysics—The Fundamental Approaches to the Study of Life. In Introduction to Biosemiotics; Barbieri, M., Ed.; Springer: Dordrecht, Germany, 2007; pp. 167–177. [Google Scholar] [CrossRef]
- Ellis, G.F.R. How purposeless physics underlies purposeful life. Nature 2023, 622, 247–249. [Google Scholar] [CrossRef]
- von Uexküll, J. Theoretische Biologie; Suhrkamp: Frankfurt am Main, Germany, 1973. [Google Scholar]
- Schultz, D.T.; Haddock, S.H.D.; Bredeson, J.V.; Green, R.E.; Simakov, O.; Rokhsar, D.S. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023, 618, 110–117. [Google Scholar] [CrossRef]
- Moon, J.; Caron, J.-B.; Moysiuk, J. A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale. Proc. R. Soc. B 2023, 290, 20222490. [Google Scholar] [CrossRef]
- Oubrahim, H.; Boon Chock, P. Chemical and Physical Principles. Encycl. Cell Biol. (Second. Ed.) 2016, 1, 3–11. [Google Scholar] [CrossRef]
- Pattee, H.H. The Physics of Symbols: Bridging the Epistemic Cut. Biosystems 2001, 60, 5–21. [Google Scholar] [CrossRef]
- Oehler, K. Sachen und Zeichen. zur Philosophie des Pragmatismus; Vittorio Klostermann: Frankfurt am Main, Germany, 1995. [Google Scholar]
- Deacon, T.W. The Symbolic Species; W.W. Norton: New York, NY, USA; London, UK, 1997. [Google Scholar]
- Lacková, L.; Matlach, V.; Faltýnek, D. Arbitrariness is not enough: Towards a functional approach to the genetic code. Theory Biosci. 2017, 136, 187–191. [Google Scholar] [CrossRef]
- Feistel, R.; Ebeling, W. Entropy and the Self-Organization of Information and Value. Entropy 2016, 18, 193. [Google Scholar] [CrossRef]
- Deacon, T.W. How Molecules Became Signs. Biosemiotics 2021, 14, 537–559. [Google Scholar] [CrossRef]
- Stachowiak, H. Allgemeine Modelltheorie; Springer: Wien, Germany, 1973. [Google Scholar]
- Willink, R. Measurement Uncertainty and Probability; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Butterfield, J. Laws, causation and dynamics at different levels. Interface Focus 2012, 2, 101–114. [Google Scholar] [CrossRef]
- Fuentes, M.A. Complexity and the Emergence of Physical Properties. Entropy 2014, 16, 4489–4496. [Google Scholar] [CrossRef]
- Craik, K.J.W. The Nature of Explanation; Cambridge University Press: Cambridge, UK, 1943. [Google Scholar]
- Pearl, J.; Mackenzie, D. The Book of Why. The New Science of Cause and Effect; Penguin Books: London, UK, 2019. [Google Scholar]
- Born, M. Symbol und Wirklichkeit I. Phys. Blätter 1965, 21, 53–63. [Google Scholar] [CrossRef]
- Born, M. Symbol und Wirklichkeit II. Phys. Blätter 1965, 21, 106–108. [Google Scholar] [CrossRef]
- Hoffman, D.D. Relativ Real. Warum wir die Wirklichkeit Nicht Erfassen Können und wie die Evolution Unsere Wahrnehmung Geformt hat. dtv, München, Germany, 2020; English Original: A Case Against Reality: Why Evolution Hid the Truth from Our Eyes; W.W. Norton: New York, NY, USA, 2019. [Google Scholar]
- Feistel, R. Life, Symbols, and Causality. Preprint 2021. [Google Scholar] [CrossRef]
- Feistel, R. Dynamics, Symbols, and Prediction. Preprint 2022. [Google Scholar] [CrossRef]
- Kant, I. Kritik der Reinen Vernunft; Felix Meiner: Hamburg, Germany, 1956; Original Editions A: 1781, B: 1787. [Google Scholar]
- Planck, M. Vom Wesen der Willensfreiheit. Nach Einem Vortrag in der Ortsgruppe Leipzig der Deutschen Philosophischen Gesellschaft am 27. November 1936; Johann Ambrosius Barth: Leipzig, Germany, 1937. [Google Scholar]
- Planck, M. Der Kausalbegriff in der Physik; Johann Ambrosius Barth: Leipzig, Germany, 1948. [Google Scholar]
- Brown, J.S.; Laundre, J.W.; Gurung, M. The Ecology of Fear: Optimal Foraging, Game Theory, and Trophic Interactions. J. Mammal. 1999, 80, 385–399. [Google Scholar] [CrossRef]
- Smith, J.A.; Suraci, J.P.; Clinchy, M.; Crawford, A.; Roberts, D.; Zanette, L.Y.; Wilmers, C.C. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. B 2017, 284, 220170433. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Brown, J.S.; Middleton, A.D.; Power, M.E.; Brashares, J.S. Landscapes of Fear: Spatial Patterns of Risk Perception and Response. Trends Ecol. Evol. 2019, 34, 355–368. [Google Scholar] [CrossRef]
- Zanette, L.Y.; Frizzelle, N.R.; Clinchy, M.; Peel, M.J.S.; Keller, C.B.; Huebner, S.E.; Packer, C. Fear of the human “super predator” pervades the South African savanna. Curr. Biol. 2023, 33, 1–8. [Google Scholar] [CrossRef]
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Penguin Books: London, UK, 2008. [Google Scholar]
- Hume, D. An Enquiry Concerning Human Understanding; German edition (1967): Eine Untersuchung über den Menschlichen Verstand; Reclam: Ditzingen, Germany, 1758. [Google Scholar]
- Russell, B. Mysticism and Logic and Other Essays. Chapter IX: On the Notion of Cause; Longmans, Green and Co.: London, UK, 1919; pp. 180–208. Available online: https://en.wikisource.org/wiki/Mysticism_and_Logic_and_Other_Essays (accessed on 28 September 2023).
- Prigogine, I. The Arrow of Time. Inaugural Lecture at the Bestowal of the Honorary Citizenship of the City of Pescara. In The Chaotic Universe, Proceedings of the Second Icra Network Workshop, Rome, Italy, 1–5 February 1999; Gurzadyan, V.G., Ruffini, R., Eds.; Advanced Series in Astrophysics and Cosmology; World Scientific: Singapore, 2000; Volume 10, pp. 1–15. [Google Scholar] [CrossRef]
- Riek, R. Entropy Derived from Causality. Entropy 2020, 22, 647. [Google Scholar] [CrossRef]
- Sapper, K. Kausalität und Finalität. Ann. Der Philos. Und Philos. Krit. 1928, 7, 205–212. Available online: https://www.jstor.org/stable/20018075 (accessed on 28 September 2023).
- Nomura, N.; Matsuno, K.; Muranaka, T.; Tomita, J. How Does Time Flow in Living Systems? Retrocausal Scaffolding and E-series Time. Biosemiotics 2019, 12, 267–287. [Google Scholar] [CrossRef]
- Pink, T. Final Causation. In The Companion to the Spanish Scholastics (Brill’s Companions to the Christian Tradition); Braun, H.E., De Born, E., Astorri, P., Eds.; Brill: Leiden, The Netherlands, 2021. [Google Scholar]
- Deichmann, U. Self-Organization and Genomic Causality in Models of Morphogenesis. Entropy 2023, 25, 873. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J. Bewusstsein. Die ersten vier Milliarden Jahre; Klett-Cotta: Stuttgart, Germany, 2021. [Google Scholar]
- Smith, J.M. Games, Sex and Evolution; Harvester Wheatsheaf: New York, NY, USA, 1988. [Google Scholar]
- Margulis, L. Der Symbiotische Planet; Westend Verlag: Frankfurt/Main, Germany, 2017. [Google Scholar]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
- Prum, R.O. The Evolution of Beauty; Doubleday: New York, NY, USA, 2017. [Google Scholar]
- Greenland, S.; Pearl, J. Causal Diagrams; Wiley StatsRef: Statistics Reference Online; John and Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Frobenius, G. Über Matrizen aus nicht Negative Elementen. Sitzung der Physikalisch-Mathematischen Classe vom 23. Mai 1912; Königliche Gesellschaft der Wissenschaften: Göttingen, Germany, 1912; pp. 456–477. [Google Scholar] [CrossRef]
- Harary, F.; Norman, F.Z.; Cartwright, D. Structural Models. An Introduction to the Theory of Directed Graphs; Wiley-Interscience: New York, NY, USA, 1965. [Google Scholar]
- Lancaster, P. Theory of Matrices; Academic Press: London, UK; New York, NY, USA, 1969. [Google Scholar]
- Gantmacher, F.R. Matrizenrechnung II; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1971. [Google Scholar]
- Ebeling, W.; Feistel, R. Physik der Selbstorganisation und Evolution; Akademie-Verlag: Berlin, Germany, 1982. [Google Scholar]
- Bornholdt, S.; Schuster, H.G. Handbook of Graphs and Networks; Wiley VCH: Weinheim, Germany, 2003. [Google Scholar]
- Hertz, H. Die Prinzipien der Mechanik. Johann Ambrosius Barth: Leipzig, Germany, 1894; Photocopy Reprint; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 1963. [Google Scholar]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; W. Strahan: London, UK, 1776. [Google Scholar]
- Pauen, M.; Roth, G. Freiheit, Schuld und Verantwortung. Grundzüge einer naturalistischen Theorie der Willensfreiheit; Suhrkamp: Frankfurt am Main, Germany, 2008. [Google Scholar]
- Pink, T. Free Will and Consciousness. In The Oxford Companion to Consciousness; Bayne, T., Cleeremans, A., Wilken, P., Eds.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Maldonato, M. Predictive Brain: Consciousness, Decision & Embodied Action; Sussex Academic Press: Sussex, UK, 2014. [Google Scholar]
- Pearl, J. Causation and decision: On Dawid’s “Decision theoretic foundation of statistical causality”. J. Causal Inference 2022, 10, 221–226. [Google Scholar] [CrossRef]
- Perkins, T.J.; Swain, P.S. Strategies for cellular decision-making. Mol. Syst. Biol. 2009, 5, 326. [Google Scholar] [CrossRef] [PubMed]
- von Weizsäcker, V. Der Gestaltkreis: Theorie der Einheit von Wahrnehmen und Bewegen; Georg Thieme Verlag: Leipzig, Germany, 1940. [Google Scholar]
- Zeeman, E.C. Euler buckling. In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences; Hilton, P., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 525. [Google Scholar] [CrossRef]
- Haken, H. Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
- Haken, H. Some Basic Concepts of Synergetics with Respect to Multistability in Perception, Phase Transitions and Formation of Meaning. In Ambiguity in Mind and Nature. Springer Series in Synergetics; Kruse, P., Stadler, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 64. [Google Scholar] [CrossRef]
- Summers, R.L. Lyapunov Stability as a Metric for Meaning in Biological Systems. Biosemiotics 2023, 16, 153–166. [Google Scholar] [CrossRef]
- Shilnikov, L.P. A certain new type of bifurcation of multidimensional dynamic systems (in Russian). Dokl. Akad. Nauk. SSSR 1969, 189, 59–62. [Google Scholar]
- Gaspard, P.; Kapral, R.; Nicolis, G. Bifurcation phenomena near homoclinic systems: A two-parameter analysis. J. Stat. Phys. 1984, 35, 697–727. [Google Scholar] [CrossRef]
- Drysdale, D.M. Homoclinic Bifurcations. Ph.D. Thesis, University of Oxford, Jesus College, Oxford, UK, 1994. [Google Scholar]
- Medrano, R.O.; Baptista, M.S.; Caldas, I.L. Basic structures of the Shilnikov homoclinic bifurcation scenario. Chaos 2005, 15, 033112. [Google Scholar] [CrossRef]
- Graham, R. Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications to Lasers and Nonlinear Optics. In Springer Tracts in Modern Physics; Höhler, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–97. [Google Scholar] [CrossRef]
- Graham, R. Models of Stochastic Behavior in Non-Equilibrium Steady States. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems. NATO Advanced Study Institutes Series; Chen, S.H., Chu, B., Nossal, R., Eds.; Springer: Boston, MA, USA, 1981; Volume 73, pp. 559–612. [Google Scholar] [CrossRef]
- Feistel, R.; Ebeling, W. Evolution of Complex Systems. Self-Organization, Entropy and Development; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1989. [Google Scholar]
- Austin, J.L. How to Do Things with Words. Analysis 1962, 23, 58–64. [Google Scholar] [CrossRef]
- Bühler, K. Sprachtheorie; Gustav Fischer: Stuttgart, Germany, 1965. [Google Scholar]
- Almheiri, A.; Hartman, T.; Maldaceda, J.; Shagoulian, E.; Tajdini, A. Replica wormholes and the entropy of Hawking radiation. J. High Energ. Phys. 2020, 2020, 13. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V.; Knoll, L.T.; Piacentini, F.; Bernardi, E.; Rebufello, E.; Avella, A.; Gramegna, M.; Degiovanni, I.P.; Genovese, M. Emergence of Constructor-Based Irreversibility in Quantum Systems: Theory and Experiment. Phys. Rev. Lett. 2022, 128, 080401. [Google Scholar] [CrossRef]
- Brunnhofer, H. ΓAΛA (ΓAΛAKTOC), Lac (Lactis), der Græcoitalische Name der Milch. Ein Monographischer Beitrag zur Ältesten Empfindungsgeschichte der Indogermanischen Völker; H. R. Sauerländer: Aarau, Switzerland, 1871; Nabu Public Domain Reprints, Lightning Source UK Ltd.: Milton Keynes UK. [Google Scholar]
- Müller, M. Max Muller on Darwin’s Philosophy of Language. Nature 1872, 7, 145. [Google Scholar] [CrossRef]
- Janson, T. A Short History of Languages; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Huxley, S.J. The courtship-habits of the great crested grebe (Podiceps cristatus); with an addition to the theory of sexual selection. Proc. Zool. Soc. Lond. 1914, 1914, 491–562. [Google Scholar] [CrossRef]
- Lorenz, K. Foreword to: Koenig, O. Kultur und Verhaltensforschung; Deutscher Taschenbuch-Verlag: München, Germany, 1970. [Google Scholar]
- Eibl-Eibesfeldt, I. Liebe und Haß; Piper: München, Germany, 1970. [Google Scholar]
- Tembrock, G. Grundlagen des Tierverhaltens; Akademie-Verlag: Berlin, Germany, 1977. [Google Scholar]
- Klix, F. Erwachendes Denken. Eine Entwicklungsgeschichte der menschlichen Intelligenz; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1980. [Google Scholar]
- von Herder, J.G. Abhandlung über den Ursprung der Sprache, Welche den von der Königl. Academie der Wissenschaften für das Jahr 1770 Gesezten Preis Erhalten Hat; Christian Friedrich Voß: Berlin, Germany, 1772; Available online: https://www.deutschestextarchiv.de/book/show/herder_abhandlung_1772 (accessed on 28 September 2023).
- Rousseau, J.J. Essay on the Origin of Language. In Two Essays on the Origin of Language, Jean-Jacques Rousseau and Johann Gottfried Herder; English Translation: Gode, A; The University of Chicago Press: Chicago, IL, USA; London, UK, 1966; pp. 85–166. [Google Scholar]
- Leibniz, G.W. Nouveaux Essais sur l‘Entendement Humain; Amsterdam/Leipzig; German edition (1904); Neue Abhandlungen über den menschlichen Verstand; Dürr: Leipzig, Germany, 1765. [Google Scholar]
- Prigogine, I. Structure, Dissipation and Life; North-Holland Publ. Company: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Gilbert, W. Origin of life: The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Mendel, G. Versuche Über Pflanzenhybriden. Verhandlungen des Naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47. 1866. Reprint: Outlook Verlag, 2020; ISBN 10: 3752416823. Available online: https://www.zobodat.at/pdf/Flora_89_0364-0403.pdf (accessed on 28 September 2023).
- Watson, J.; Crick, F. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Nirenberg, M.W.; Matthaei, H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef]
- Dawkins, R. The Selfish Gene; Oxford University Press: Oxford, UK, 1976. [Google Scholar]
- Denny-Brown, D. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Nature 1928, 121, 662–664. [Google Scholar] [CrossRef]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef]
- Poincaré, H.; Goroff, D.L. New Methods of Celestial Mechanics; American Institute of Physics: College Park, MD, USA, 1993. [Google Scholar]
- Born, M. Physik im Wandel Meiner Zeit; Vieweg & Sohn: Braunschweig, Germany, 1966. [Google Scholar]
- Orcutt, G.H. Actions, Consequences, and Causal Relations. Rev. Econ. Stat. 1952, 34, 305–313. [Google Scholar] [CrossRef]
- Planck, M. Wissenschaftliche Selbstbiographie; Johann Ambrosius Barth: Leipzig, Germany, 1948. [Google Scholar]
- Mast, F. Black Mamba Oder die Macht der Imagination; Verlag Herder: Freiburg, Germany, 2020. [Google Scholar]
- Logan, R.K. The Alphabet Effect. The Impact of the Phonetic Alphabet on the Development of Western Civilisation; William Morrow: New York, NY, USA, 1986. [Google Scholar]
- Pinker, S. The Language Instinct. How the Mind Creates Language; William Morrow: New York, NY, USA, 1994. [Google Scholar]
- Sagan, C. Die Drachen von Eden. Das Wunder der Menschlichen Intelligenz; Droemer/Knaur: München/Zürich, Germany, 1978. [Google Scholar]
- TEOS-10; Thermodynamic Equation of SeaWater 2010. Available online: https://www.teos-10.org/ (accessed on 28 September 2023).
- IOC; SCOR; IAPSO. The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties; Intergovernmental Oceanographic Commission, Manuals and Guides No. 56; UNESCO (English): Paris, France, 2010; p. 196. Available online: http://www.TEOS-10.org (accessed on 26 November 2022).
- Feistel, R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. Ocean Sci. 2018, 14, 471–502. [Google Scholar] [CrossRef]
- Harvey, A.H.; Hrubý, J.; Meier, K. Improved and Always Improving: Reference Formulations for Thermophysical Properties of Water. J. Phys. Chem. Ref. Data 2023, 52, 011501. [Google Scholar] [CrossRef]
- GUM. Guide to the Expression of Uncertainty in Measurement. JCGM. 2008. Available online: https://www.bipm.org/en/committees/jc/jcgm/publications (accessed on 28 September 2023).
- Feistel, R.; Lovell-Smith, J.W.; Saunders, P.; Seitz, S. Uncertainty of empirical correlation Equations. Metrologia 2016, 53, 1079–1090. [Google Scholar] [CrossRef]
- Hilbert, D. Grundlagen der Geometrie; Teubner: Leipzig, Germany, 1903. [Google Scholar]
- Kirkaldy, J.S. Thermodynamics of Terrestrial Evolution. Biophys. J. 1965, 5, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifschitz, E.M. Lehrbuch der Theoretischen Physik Band V, Statistische Physik; Akademie-Verlag: Berlin, Germany, 1966. [Google Scholar]
- Schmelzer, J.W.P. Nucleation Theory and Applications; Wiley-VCH: Berlin, Germany, 2005. [Google Scholar]
- Schmelzer, J.W.P. Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results. Entropy 2019, 21, 1147. [Google Scholar] [CrossRef]
- Hellmuth, O.; Schmelzer, J.W.P.; Feistel, R. Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation. Entropy 2020, 22, 50. [Google Scholar] [CrossRef]
- Hill, T.L. Thermodynamics of Small Systems. J. Chem. Phys. 1962, 36, 3182–3197. [Google Scholar] [CrossRef]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Feistel, R.; Ebeling, W. Deterministic and stochastic theory of sustained oscillations in autocatalytic reaction systems. Phys. A Stat. Mech. Its Appl. 1978, 93, 114–137. [Google Scholar] [CrossRef]
- Bak, P.; Chen, K. Self-Organized Criticality. Sci. Am. 1991, 264, 46–53. Available online: https://www.jstor.org/stable/24936753 (accessed on 28 September 2023). [CrossRef]
- Ebeling, W.; Schimansky-Geier, L. Stochastic dynamics of a bistable reaction system. Phys. A Stat. Mech. Its Appl. 1979, 98, 587–600. [Google Scholar] [CrossRef]
- Schuster, H.G. Deterministic Chaos. An Introduction; Physik Verlag: Weinheim, Germany, 1984. [Google Scholar]
- Ruelle, D. Zufall und Chaos; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Anishchenko, V.S.; Astakhov, V.; Neiman, A.; Vadivasova, T.; Schimansky-Geier, L. Nonlinear Dynamics of Chaotic and Stochastic Systems; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley-Interscience: London, UK; New York, NY, USA; Sydney, Australia; Toronto, ON, Canada, 1971. [Google Scholar]
- Ebeling, W. Strukturbildung bei Irreversiblen Prozessen; Teubner: Leipzig, Germany, 1976. [Google Scholar]
- Prigogine, I.; Stengers, I. Dialog mit der Natur; Piper: München, Germany, 1981. [Google Scholar]
- Nicolis, G.; Prigogine, I. Die Erforschung des Komplexen; Piper: München, Germany, 1987. [Google Scholar]
- Haken, H.; Plath, P.J.; Ebeling, W.; Romanovsky, Y.M. Beiträge zur Geschichte der Synergetik, Allgemeine Prinzipien der Selbstorganisation in Natur und Gesellschaft; Springer Spektrum: Wiesbaden, Germany, 2016. [Google Scholar]
- Hahn, H. Geometrical Aspects of the Pseudo Steady State Hypothesis in Enzyme Reactions. In Physics and Mathematics of the Nervous System; Conrad, M., Güttinger, W., Dal Cin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 546–582. [Google Scholar] [CrossRef]
- Prigogine, I.; Wiaume, J.M. Biologie et thermodynamique des phénomènes irréversibles. Experientia 1946, 2, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Prigogine, I.; Nicolis, G.; Babloyantz, A. Thermodynamics of evolution. Phys. Today 1972, 25, 23–28. [Google Scholar] [CrossRef]
- Romanovsky, Y.M.; Stepanova, N.V.; Chernavsky, D.S. Mathematical Modelling in Biophysics (in Russian); Nauka: Moscow, Russia, 1975. [Google Scholar]
- Ebeling, W.; Feistel, R. On the Evolution of Biological Macromolecules. I: Physico-Chemical Self-Organization. Stud. Biophys. 1979, 75, 131–146. Available online: https://www.researchgate.net/publication/273697474_On_the_Evolution_of_Biological_Macromolecules_I_Physico-Chemical_Self-Organization (accessed on 28 September 2023).
- Ebeling, W.; Feistel, R. Studies on Manfred Eigen’s model for the self-organization of information processing. Eur. Biophys. J. 2018, 47, 395–401. [Google Scholar] [CrossRef]
- Ebeling, W.; Ulbricht, H. Selforganization by Nonlinear Irreversible Processes; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Ebeling, W.; Engel, A.; Feistel, R. Physik der Evolutionsprozesse; Akademie-Verlag: Berlin, Germany, 1990. [Google Scholar]
- Gibbs, J.W. Elementary Principles of Statistical Mechanics; Charles Scribner’s Sons: New York, NY, USA; Edward Arnold: London, UK, 1902. [Google Scholar]
- Subarev, D.N. Statistische Thermodynamik des Nichtgleichgewichts; Akademie-Verlag: Berlin, Germany, 1976. [Google Scholar]
- Alberti, P.M.; Uhlmann, A. Dissipative Motion in State Spaces; Teubner: Leipzig, Germany, 1981. [Google Scholar]
- Klimonotovich, Y.L. Statistical Physics (in Russian); Nauka: Moscow, Russia, 1982. [Google Scholar]
- Ebeling, W. On the relation between various entropy concepts and the valoric interpretation. Phys. A 1992, 182, 108–115. [Google Scholar] [CrossRef]
- Ebeling, W. Physical basis of information and the relation to entropy. Eur. Phys. J. Spec. Top. 2017, 226, 161–176. [Google Scholar] [CrossRef]
- Volkenstein, M.V. Entropy and Information; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Feistel, R.; Romanovsky, Y.M.; Vasiliev, V.A. Evolution of Eigen’s Hypercycles Existing in Coacervates. Biofizika 1980, 25, 882–887. (In Russian). Available online: https://www.researchgate.net/publication/276040858_Evolution_of_Eigen’s_Hypercycles_Existing_in_Coacervates_in_Russian (accessed on 28 September 2023).
- Ebeling, W.; Feistel, R. Theory of Selforganization and Evolution: The Role of Entropy, Value and Information. J. Non-Equilib. Thermodyn. 1992, 17, 303–332. [Google Scholar] [CrossRef]
- Matsuno, K. Molecular Semiotics toward the Emergence of Life. Biosemiotics 2008, 1, 131–144. [Google Scholar] [CrossRef]
- Pattee, H.H.; Rączaszek-Leonardi, J. Historical Introduction to Laws Language and Life; Springer: Dordrecht, Germany, 2012. [Google Scholar] [CrossRef]
- Rich, A. On the Problems of Evolution and Biochemical Information Transfer. In Horizons in Biochemistry; Kasha, M., Pullman, B., Eds.; Academic Press: London, UK; New York, NY, USA, 1962; pp. 103–126. [Google Scholar]
- Eigen, M.; Winkler-Oswatitsch, R. Transfer-RNA, an early gene? Naturwissenschaften 1981, 68, 282–292. [Google Scholar] [CrossRef]
- Van Dover, C.L. Forty years of fathoming life in hot springs on the ocean floor. Nature 2019, 567, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.W. Der Ursprung des Lebens; Thieme: Stuttgart, Germany, 1978. [Google Scholar]
- Austin, T.L.; Fagen, R.E.; Penney, W.F.; Riordan, J. The number of components in random linear graphs. Ann. Math. Stat. 1959, 30, 747–754. [Google Scholar] [CrossRef]
- Feistel, R. Selektion und Nichtlineare Oszillationen in Chemischen Modellsystemen . Habilitation Thesis, Rostock University, Rostock, Germany, 1979. [Google Scholar]
- Sonntag, I.; Feistel, R.; Ebeling, W. Random Networks of Catalytic Biochemical Reactions. Biom. J. 1981, 23, 501–515. [Google Scholar] [CrossRef]
- Feistel, R. On the Evolution of Biological Macromolecules. IV: Holobiotic Competition. Stud. Biophys. 1983, 93, 121–128. Available online: https://www.researchgate.net/publication/273696779_On_the_Evolution_of_Biological_Macromolecules_IV_Holobiotic_Competition (accessed on 28 September 2023).
- Ebeling, W.; Feistel, R. On Models of the Self-Organization of Information Processing. Preprint 2018. [Google Scholar] [CrossRef]
- Woese, C.R. On the origin of the genetic code. Proc. Natl. Acad. Sci. USA 1965, 54, 1546–1552. [Google Scholar] [CrossRef]
- Crick, F.H.C. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Jiménez-Montaño, M.A.; de la Mora-Basáñez, C.R.; Pöschel, T. The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro. Biosystems 1996, 39, 117–125. [Google Scholar] [CrossRef]
- Béland, P.; Allen, T.F.H. The Origin and Evolution of the Genetic Code. J. Theor. Biol. 1994, 170, 359–365. [Google Scholar] [CrossRef]
- Carter, C.W. Whence the genetic code?: Thawing the “Frozen Accident”. Heredity 2008, 100, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Montaño, M.A. The fourfold way of the genetic code. Biosystems 2009, 98, 105–114. [Google Scholar] [CrossRef]
- José, M.V.; Zamudio, G.S.; Morgado, E.R. A unified model of the standard genetic code. R. Soc. Open Sci. 2017, 4, 160908. [Google Scholar] [CrossRef] [PubMed]
- Xie, P. Who is the missing “matchmaker” between proteins and nucleic acids? Innovation 2021, 2, 100120. [Google Scholar] [CrossRef] [PubMed]
- Wills, P.R. Origins of Genetic Coding: Self-Guided Molecular Self-Organisation. Entropy 2023, 25, 1281. [Google Scholar] [CrossRef]
- Feistel, R.; Sändig, R. Zur Analyse hierarchischer Strukturen mit Methoden der Graphen- und Matrizentheorie. Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math.-Naturwissenschaftliche Reihe 1977, 26, 625–634. Available online: https://www.researchgate.net/publication/265506929_Zur_Analyse_hierarchischer_Strukturen_mit_Methoden_der_Graphen-_und_Matrizentheorie (accessed on 28 September 2023).
- Feistel, R.; Ebeling, W. On the Eigen-Schuster Concept of Quasispecies in the Theory of Natural Self-Organization. Stud. Biophys. 1978, 71, 139. Available online: https://www.researchgate.net/publication/275243146_On_the_Eigen-Schuster_Concept_of_Quasispecies_in_the_Theory_of_Natural_Self-Organization (accessed on 28 September 2023).
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1981; Available online: https://vattay.web.elte.hu/lectures/Non-equilibrium%20Statistical%20Physics/VanKampen.pdf (accessed on 28 September 2023).
- Görke, L. Mengen, Relationen, Funktionen; Volk und Wissen: Berlin, Germany, 1970. [Google Scholar]
- Margenau, H.; Murphy, G.M. Die Mathematik für Physik und Chemie; Teubner: Leipzig, Germany, 1964. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Uhlmann, A. Markov Master Equation and the Behaviour of some Entropy-like Quantities. Rostocker Physikalische Manuskripte 2, 45, University of Rostock. 1977. Available online: http://www.physik.uni-leipzig.de/~uhlmann/PDF/Uh77b.pdf (accessed on 28 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feistel, R. Self-Organisation of Prediction Models. Entropy 2023, 25, 1596. https://doi.org/10.3390/e25121596
Feistel R. Self-Organisation of Prediction Models. Entropy. 2023; 25(12):1596. https://doi.org/10.3390/e25121596
Chicago/Turabian StyleFeistel, Rainer. 2023. "Self-Organisation of Prediction Models" Entropy 25, no. 12: 1596. https://doi.org/10.3390/e25121596
APA StyleFeistel, R. (2023). Self-Organisation of Prediction Models. Entropy, 25(12), 1596. https://doi.org/10.3390/e25121596