Ideal Agent System with Triplet States: Model Parameter Identification of Agent–Field Interaction
Abstract
:1. Introduction
2. Method
2.1. Canonical Ensemble
2.1.1. Trade Potential
2.1.2. Utility
2.1.3. Risk Measures
2.2. Microcanonical Ensemble
State Quantity T
3. Application
3.1. Procedure for Determining the Model Parameters—Experimental Setup
- Periods of low, constant volatility T with sideways price movement are sought for the single asset to be examined. Quantile specifications are used to search for such time segments. In the ideal case, the time segments found correspond to dynamic equilibria.
- The news situation is then examined for all the time segments found, and those time segments are selected for further analysis in which a single central message dominates the following period. The strength and direction of the message are determined.
- We set the value of k to one monetary unit, compare Section 2.2, and calculate . This means that remains in as a variable that has yet to be determined.
- Next, the seller or buyer surplus is determined from the shares traded. There are several ways to estimate ; we discuss three different approaches and suggest one for further use. A pair of measured values is thus calculated for each examined time segment.
3.2. Data
3.2.1. Volatility T—Temperature
3.2.2. Trade Potential —Magnetization
3.2.3. News Sentiment —The Magnetic Field
3.3. Results
3.4. Concept for a One-Step-Ahead-Forecast
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Table of Correspondence
Model Parameters | Econometrics | Literature | ||
---|---|---|---|---|
External Parameters | Magnetic Field | News Sentiment | Public Information that Affects all Agents; Investment Environment; Preference Parameter: [15,19,23,24,25,26] | |
T | Temperature | Volatility | Noise; Irrationality; Degree of Randomness in Agents’ Decisions; Collective Climate Parameter or Volatility: [15,19,23,27,29,31,52,53] | |
N | Number of Particles | Number of Shares | Number of Traders in buying/selling Positions: [30] | |
Model Parameters | Magnetic Moment | Willingness to Trade | Willingness to adopt/buy; Idiosyncratic Judgment: [19,24,25,26,31] | |
k | Boltzmann Constant | Scale/Unit Parameter | Unspecified in Literature (model endogenous)—mediates between Entropy and Energy. | |
Energy of State | Energy Share of “hold”-Position | |||
Target Parameters | E | Energy | Investors’ “Utility” | Utility Function: [19] |
S | Entropy | Entropy | Measure of Uncertainty: [34,48] | |
M | Magnetization | Purchase/Sale Potential | Aggregate Demand; Average Opinion; Net-Demand: [19,24,28,30] | |
− | Trade Potential | Active Agents: [32] | ||
Susceptibility | Overall System Sensitivity | Depth parameter of the market which measures sensitivity of price fluctuation in response to changes in excess demand: [30] | ||
Thermal loss Coefficient | Overall System Sensitivity | Unspecified in Literature. Parameter which measures sensitivity of trade potential in response to changes in volatility | ||
Capacity | Overall SystemSensitivity | Unspecified in Literature. Parameter which measures sensitivity of utility in response to changes in volatility |
References
- Föllmer, H. Random economies with many interacting agents. J. Math. Econ. 1974, 1, 51–62. [Google Scholar] [CrossRef]
- Cont, R.; Tankov, P. Financial Modelling with Jump Processes; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sornette, D. Physics and financial economics (1776–2014): Puzzles, Ising and agent-based models. Rep. Prog. Phys. 2014, 77, 062001. [Google Scholar] [CrossRef] [PubMed]
- Werker, C.; Brenner, T. Empirical calibration of simulation models. Pap. Econ. Evol. 2004, 0410, 1–15. [Google Scholar]
- LeBaron, B. Chapter 24 Agent-based Computational Finance. In Handbook of Computational Economics; Tesfatsion, L., Judd, K.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 1187–1233. [Google Scholar] [CrossRef]
- Windrum, P.; Fagiolo, G.; Moneta, A. Empirical Validation of Agent-Based Models: Alternatives and Prospects. J. Artif. Soc. Soc. Simulaion 2007, 10, 1–8. [Google Scholar]
- Fagiolo, G.; Moneta, A.; Windrum, P. A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems. Comput. Econ. 2007, 30, 195–226. [Google Scholar] [CrossRef]
- Chen, S.H.; Chang, C.L.; Du, Y.R. Agent-based economic models and econometrics. Knowl. Eng. Rev. 2012, 27, 187–219. [Google Scholar] [CrossRef]
- Iori, G.; Porter, J. Agent-Based Modelling for Financial Markets; Department of Economics Discussion Paper Series No. 12/08; Department of Economics, City University London: London, UK, 2012. [Google Scholar]
- Fagiolo, G.; Guerini, M.; Lamperti, F.; Moneta, A.; Roventini, A. Validation of Agent-Based Models in Economics and Finance. In Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives; Beisbart, C., Saam, N.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 763–787. [Google Scholar] [CrossRef]
- Isihara, A. Statistical Physics; Reprint 2013; Elsevier Science: Burlington, VT, USA, 1971. [Google Scholar]
- Landau, L.D.; Lifšic, E.M. Course of Theoretical Physics, 3rd ed.; Pergamon Press: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Classical Theoretical Physics; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; London, UK; Paris, France; Tokyo, Japan; Hong Kong, China; Barcelona, Spain; Budapest, Hungary, 1995. [Google Scholar]
- Kardar, M. Statistical Physics of Particles; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Weidlich, W. The Statistical Description of Polarization Phenomena in Society. Br. J. Math. Stat. Psychol. 1971, 24, 251–266. [Google Scholar] [CrossRef]
- Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A new approach of sociological collective behaviour. I. Mean–behaviour description of a strike. J. Math. Sociol. 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Chakraborti, A.; Toke, I.M.; Patriarca, M.; Abergel, F. Econophysics review: I. Empirical facts. Quant. Financ. 2011, 11, 991–1012. [Google Scholar] [CrossRef]
- Chakraborti, A.; Toke, I.M.; Patriarca, M.; Abergel, F. Econophysics review: II. Agent-based models. Quant. Financ. 2011, 11, 1013–1041. [Google Scholar] [CrossRef]
- Bouchaud, J.P. Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges. J. Stat. Phys. 2013, 151, 567–606. [Google Scholar] [CrossRef]
- Schinckus, C. 1996–2016: Two decades of econophysics: Between methodological diversification and conceptual coherence. Eur. Phys. J. Spec. Top. 2016, 225, 3299–3311. [Google Scholar] [CrossRef]
- Schinckus, C. Ising model, econophysics and analogies. Phys. A Stat. Mech. Its Appl. 2018, 508, 95–103. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Eugene Stanley, H. Econophysics and sociophysics: Their milestones & challenges. Phys. A Stat. Mech. Its Appl. 2019, 516, 240–253. [Google Scholar] [CrossRef]
- Kaizoji, T. Speculative bubbles and crashes in stock markets: An interacting-agent model of speculative activity. Phys. A Stat. Mech. Its Appl. 2000, 287, 493–506. [Google Scholar] [CrossRef]
- Michard, Q.; Bouchaud, J.P. Theory of collective opinion shifts: From smooth trends to abrupt swings. Eur. Phys. J. B 2005, 47, 151–159. [Google Scholar] [CrossRef]
- Sornette, D.; Zhou, W.X. Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets. Phys. A Stat. Mech. Its Appl. 2006, 370, 704–726. [Google Scholar] [CrossRef]
- Borghesi, C.; Bouchaud, J.P. Of songs and men: A model for multiple choice with herding. Qual. Quant. 2007, 41, 557–568. [Google Scholar] [CrossRef]
- Oh, W.; Jeon, S. Membership Herding and Network Stability in the Open Source Community: The Ising Perspective. Manag. Sci. 2007, 53, 1086–1101. [Google Scholar] [CrossRef]
- Vikram, S.V.; Sinha, S. Emergence of universal scaling in financial markets from mean-field dynamics. Phys. Rev. E 2011, 83, 016101. [Google Scholar] [CrossRef]
- Krause, S.M.; Bornholdt, S. Opinion formation model for markets with a social temperature and fear. Phys. Rev. E 2012, 86, 056106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, J.; Fang, W. Volatility behavior of visibility graph EMD financial time series from Ising interacting system. Phys. A Stat. Mech. Its Appl. 2015, 432, 301–314. [Google Scholar] [CrossRef]
- Crescimanna, V.; Di Persio, L. Herd Behavior and Financial Crashes: An Interacting Particle System Approach. J. Math. 2016, 2016, 7510567. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Korutcheva, E.; de La Rubia, F.J. A 3-states magnetic model of binary decisions in sociophysics. Phys. A Stat. Mech. Its Appl. 2016, 462, 603–618. [Google Scholar] [CrossRef]
- Foley, D.K. Statistical Equilibrium in Economics: Method, Interpretation, and an Example. In Proceedings of the XII Workshop on General Equilibrium: Problems, Prospects and Alternatives, Siena, Italy, 4–11 July 1999. [Google Scholar]
- Marsili, M. On the multinomial logit model. Phys. A Stat. Mech. Its Appl. 1999, 269, 9–15. [Google Scholar] [CrossRef]
- Iori, G. Avalanche Dynamics and Trading Friction Effects on Stock Market Returns. Int. J. Mod. Phys. C 1999, 10, 1149–1162. [Google Scholar] [CrossRef]
- Cont, R.; Bouchaud, J.P. Herd Behavior and Aggregate Fluctuations in Financial Markets. Macroecon. Dyn. 2000, 4, 170–196. [Google Scholar] [CrossRef]
- Takaishi, T. Simulations of financial markets in a Potts-like model. Int. J. Mod. Phys. C 2005, 16, 1311–1317. [Google Scholar] [CrossRef]
- Sato, A.H. Frequency analysis of tick quotes on the foreign exchange market and agent-based modeling: A spectral distance approach. Phys. A Stat. Mech. Its Appl. 2007, 382, 258–270. [Google Scholar] [CrossRef]
- Takaishi, T. Analysis of Spin Financial Market by GARCH Model. J. Phys. Conf. Ser. 2013, 454, 012041. [Google Scholar] [CrossRef]
- Anderson, S.P.; de Palma, A.; Thisse, J.F. Discrete Choice Theory of Product Differentiation, 4th ed.; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Bouchaud, J.P. The (unfortunate) complexity of the economy. Phys. World 2009, 22, 28–32. [Google Scholar] [CrossRef]
- Sun, L.; Najand, M.; Shen, J. Stock return predictability and investor sentiment: A high-frequency perspective. J. Bank. Financ. 2016, 73, 147–164. [Google Scholar] [CrossRef]
- Gao, B.; Yang, C. Forecasting stock index futures returns with mixed-frequency sentiment. Int. Rev. Econ. Financ. 2017, 49, 69–83. [Google Scholar] [CrossRef]
- Renault, T. Intraday online investor sentiment and return patterns in the U.S. stock market. J. Bank. Financ. 2017, 84, 25–40. [Google Scholar] [CrossRef]
- Pan, W.F. Does Investor Sentiment Drive Stock Market Bubbles? Beware of Excessive Optimism! J. Behav. Financ. 2020, 21, 27–41. [Google Scholar] [CrossRef]
- Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Théorique Appl. 1907, 6, 661–690. [Google Scholar] [CrossRef]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Brusentsov, N.P.; Alvarez, J.R. Ternary Computers: The Setun and the Setun 70; Impagliazzo, J., Proydakov, E., Eds.; SoRuCom 2006, IFIP AICT 357; IFIP International Federation for Information Processing: Vienna, Austria, 2011; pp. 74–80. [Google Scholar]
- Nadal, J.P.; Chenevez, O.; Weisbuch, G.; Kirman, A. A Formal Approach to Market Organization: Choice Functions, Mean Field Approximation and Maximum Entropy Principle. In Proceedings of the Self-Organization and Evolutionary Economics: New Developments, CNAM, Paris, France, 30 September–1 October 1996; Economica: Paris, France, 1998. [Google Scholar]
- de Mattos Neto, P.S.G.; Silva, D.A.; Ferreira, T.A.E.; Cavalcanti, G.D.C. Market volatility modeling for short time window. Phys. A Stat. Mech. Its Appl. 2011, 390, 3444–3453. [Google Scholar] [CrossRef]
- Boerner, C.J.; Hoffmann, I.; Stiebel, J.H. On the connection between temperature and volatility in ideal agent systems. J. Stat. Mech. Theory Exp. 2023, 2023, 103401. [Google Scholar] [CrossRef]
- Boerner, C.J.; Hoffmann, I.; Stiebel, J.H. Generalized Agent System with Triplet States: Model Parameter Identification of Agent-Agent Interaction. SSRN Electron. J. 2023, 1–39. [Google Scholar] [CrossRef]
- Kearney, C.; Liu, S. Textual sentiment in finance: A survey of methods and models. Int. Rev. Financ. Anal. 2014, 33, 171–185. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. Textual Analysis in Accounting and Finance: A Survey. J. Account. Res. 2016, 54, 1187–1230. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. Textual Analysis in Finance. Annu. Rev. Financ. Econ. 2020, 12, 357–375. [Google Scholar] [CrossRef]
- Stangor, P.; Kuerzinger, L. Measuring investor sentiment from Social Media Data—An emotional approach. SSRN Electron. J. 2021, 1–25. [Google Scholar] [CrossRef]
- Feinerer, I.; Hornik, K.; Meyer, D. Text Mining Infrastructure in R. J. Stat. Softw. 2008, 25, 1–54. [Google Scholar] [CrossRef]
- Mechura, M.B. Lemmatization List: English (en) [Data File]. Available online: http://www.lexiconista.com (accessed on 13 March 2022).
- Rinker, T.W. textstem: Tools for Stemming and Lemmatizing Text. Version 0.1.4. 2018. Available online: https://CRAN.R-project.org/package=textstem (accessed on 14 November 2023).
- Feuerriegel, S.; Proellochs, N. SentimentAnalysis: Dictionary-Based Sentiment Analysis. Version 1.3-5. 2023. Available online: https://CRAN.R-project.org/package=SentimentAnalysis (accessed on 14 November 2023).
- Henry, E. Are Investors Influenced By How Earnings Press Releases Are Written? J. Bus. Commun. 2008, 45, 363–407. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Financ. 2011, 66, 35–65. [Google Scholar] [CrossRef]
- Rinker, T.W. qdapDictionaries: Dictionaries to Accompany the qdap Package. Version 1.0.7. 2013. Available online: https://CRAN.R-project.org/package=qdapDictionaries (accessed on 14 November 2023).
- Kawasaki, Z. Organizational Use of Machine Translation Systems. In Progress in Machine Translation; Nirenburg, S., Ed.; IOS Press: Amsterdam, The Netherlands, 1993; pp. 217–224. [Google Scholar]
- Wu, X.; Xiao, L.; Sun, Y.; Zhang, J.; Ma, T.; He, L. A Survey of Human-in-the-loop for Machine Learning. arXiv 2021, arXiv:2108.00941v3. [Google Scholar] [CrossRef]
- Chen, H.; De, P.; Hu, Y.; Hwang, B.H. Wisdom of Crowds: The Value of Stock Opinions Transmitted through Social Media. Rev. Financ. Stud. 2014, 27, 1367–1403. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. The Sum of All FEARS Investor Sentiment and Asset Prices. Rev. Financ. Stud. 2015, 28, 1–32. [Google Scholar] [CrossRef]
- Löffler, G.; Norden, L.; Rieber, A. Negative news and the stock market impact of tone in rating reports. J. Bank. Financ. 2021, 133, 106256. [Google Scholar] [CrossRef]
- Zhang, W.; Skiena, S. Trading strategies to exploit blog and news sentiment. In Proceedings of the Fourth International aAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Li, X.; Xie, H.; Chen, L.; Wang, J.; Deng, X. News impact on stock price return via sentiment analysis. Knowl.-Based Syst. 2014, 69, 14–23. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM. arXiv 2019, arXiv:1911.09512. [Google Scholar]
- Feldman, T. A More Predictive Index of Market Sentiment. J. Behav. Financ. 2010, 11, 211–223. [Google Scholar] [CrossRef]
- Ding, W.; Mazouz, K.; Wang, Q. Volatility timing, sentiment, and the short-term profitability of VIX-based cross-sectional trading strategies. J. Empir. Financ. 2021, 63, 42–56. [Google Scholar] [CrossRef]
- Corrado, C.J.; Miller, J.T.W. The forecast quality of CBOE implied volatility indexes. J. Futur. Mark. 2005, 25, 339–373. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. In Adaptive Computation and Machine Learning; The MIT Press: Cambridge, MA, USA; London, UK, 2016. [Google Scholar]
Loughran-McDonald | Henry | Harvard-IV | QDAP | |
---|---|---|---|---|
sign unmodified | ||||
sign neutralized | ||||
sign adjusted |
Date | Core Message | |||||||
---|---|---|---|---|---|---|---|---|
Analysis | News | Capital Market | Risk-Measures | |||||
Units | ||||||||
3 August 2021 | F.D.A. Aims to Give Final Approval to Pfizer Vaccine by Early Next Month | |||||||
6 August 2021 | FDA expects to have COVID vaccine booster strategy early next month | |||||||
NA | ||||||||
20 August 2021 | FDA Approves Pfizer-Biontech COVID-19 Vaccine | |||||||
10 September 2021 | Biontech to Seek Vaccine Approval for 5–11 year olds | |||||||
13 September 2021 | Covid Evidence doesn’t support broad Need for Boosters | |||||||
16 September 2021 | FDA Advisers Back a Narrower Authorization for Pfizer Booster | |||||||
23 September 2021 | FDA Authorizes Booster Dose of Pfizer-BioNTech COVID-19 Vaccine for | |||||||
Certain Populations | ||||||||
30 September 2021 | Pfizer/BioNTech Vaccine Antibodies Disappear | |||||||
18 October 2021 | Pfizer And AstraZeneca Vaccines Were Effective As Prior Infection, | |||||||
U.K. Study Finds | ||||||||
20 October 2021 | CDC: Pfizer COVID-19 Vaccine Highly Protective in 12–18 Age Group | |||||||
4 November 2021 | U.K. Regulator Is First to Approve Merck’s COVID-19 Pill | |||||||
5 November 2021 | Update 2: Pfizer says antiviral pill cuts risk of severe COVID-19 by 89% | |||||||
26 November 2021 | Vaccine Stocks Jump Premarket Amid New Variant Fears, EU Backing | |||||||
6 December 2021 | Vaccine Stocks Slip as Street Weighs Omicron Variant Uncertainty | |||||||
10 December 2021 | Researchers in South Africa have also found a drop-off in the level of antibody | |||||||
protection from that vaccine versus the new strain | ||||||||
31 December 2021 | Pfizer Vaccine Causes Myocarditis | |||||||
10 January 2022 | Pfizer CEO: Developing Omicron Targeted Vaccine | |||||||
21 January 2022 | Less-Threatening Omicron Lowers Covid Vaccine Sales Estimate | |||||||
Parameter | Value | Range |
---|---|---|
( USD) | 3.92 | (3.51–4.21) |
0.75 | (0.00–1.00) |
MAE | MSE | MAPE | RMSE | |
---|---|---|---|---|
3SM | ||||
2SM | ||||
LOCF | ||||
MA | ||||
ARIMA | ||||
TS Regression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Börner, C.J.; Hoffmann, I.; Stiebel, J.H. Ideal Agent System with Triplet States: Model Parameter Identification of Agent–Field Interaction. Entropy 2023, 25, 1666. https://doi.org/10.3390/e25121666
Börner CJ, Hoffmann I, Stiebel JH. Ideal Agent System with Triplet States: Model Parameter Identification of Agent–Field Interaction. Entropy. 2023; 25(12):1666. https://doi.org/10.3390/e25121666
Chicago/Turabian StyleBörner, Christoph J., Ingo Hoffmann, and John H. Stiebel. 2023. "Ideal Agent System with Triplet States: Model Parameter Identification of Agent–Field Interaction" Entropy 25, no. 12: 1666. https://doi.org/10.3390/e25121666
APA StyleBörner, C. J., Hoffmann, I., & Stiebel, J. H. (2023). Ideal Agent System with Triplet States: Model Parameter Identification of Agent–Field Interaction. Entropy, 25(12), 1666. https://doi.org/10.3390/e25121666