Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stress Data
2.2. Pre-Processing
2.3. HRV Features
2.4. Statistical Analysis
2.4.1. Student’s t-Test
2.4.2. Spearman Correlation Analysis and Bland–Altman Plots
2.5. Stress Classification
3. Results
3.1. Ultra-Short-Term HRV Features Analysis
3.2. Stress Classification with Ultra-Short-Term HRV Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Healey, J.A.; Picard, R.W. Detecting Stress during Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.D.; Boyle, L.N. Driver Stress as Influenced by Driving Maneuvers and Roadway Conditions. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 177–186. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Fontaine, M.D.; Boateng, R.A. Evaluating the Impact of Adaptive Signal Control Technology on Driver Stress and Behavior Using Real-World Experimental Data. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 133–144. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K. Van Wearable-Based Affect Recognition—A Review. Sensors 2019, 19, 4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, S.A.; Lewis, I.; Freeman, J. Comparison of Self-Report and Objective Measures of Driving Behavior and Road Safety: A Systematic Review. J. Saf. Res. 2018, 65, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Bin Queyam, A. A Novel Method of Stress Detection Using Physiological Measurements of Automobile Drivers. Int. J. Electron. Eng. 2013, 5, 13–20. [Google Scholar]
- Gao, H.; Yüce, A.; Thiran, J.P. Detecting emotional stress from facial expressions for driving safety. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; Volume 1, pp. 5961–5965. [Google Scholar]
- Lee, D.S.; Chong, T.W.; Lee, B.G. Stress Events Detection of Driver by Wearable Glove System. IEEE Sens. J. 2017, 17, 194–204. [Google Scholar] [CrossRef]
- Munla, N.; Khalil, M.; Shahin, A.; Mourad, A. Driver Stress Level Detection Using HRV Analysis. In Proceedings of the 2015 International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 16–18 September 2015; pp. 61–64. [Google Scholar] [CrossRef]
- Nemcova, A.; Svozilova, V.; Bucsuhazy, K.; Smisek, R.; Mezl, M.; Hesko, B.; Belak, M.; Bilik, M.; Maxera, P.; Seitl, M.; et al. Multimodal Features for Detection of Driver Stress and Fatigue: Review. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3214–3233. [Google Scholar] [CrossRef]
- Wang, J.S.; Lin, C.W.; Yang, Y.T.C. A K-Nearest-Neighbor Classifier with Heart Rate Variability Feature-Based Transformation Algorithm for Driving Stress Recognition. Neurocomputing 2013, 116, 136–143. [Google Scholar] [CrossRef]
- Dalmeida, K.M.; Masala, G.L. Hrv Features as Viable Physiological Markers for Stress Detection Using Wearable Devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef]
- Jiao, Y.; Sun, Z.; Fu, L.; Yu, X.; Jiang, C.; Zhang, X.; Liu, K.; Chen, X. Physiological Responses and Stress Levels of High-Speed Rail Train Drivers under Various Operating Conditions—A Simulator Study in China. Int. J. Rail Transp. 2022, 1–16. [Google Scholar] [CrossRef]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-Short Term HRV Features as Surrogates of Short Term HRV: A Case Study on Mental Stress Detection in Real Life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecchia, L.; Castaldo, R.; Montesinos, L.; Melillo, P. Are Ultra-short Heart Rate Variability Features Good Surrogates of Short-term Ones? State-of-the-art Review and Recommendations. Healthc. Technol. Lett. 2018, 5, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, U.; Cohen, O.; Kaminer, K.; Ilani, J.; Nussinovitch, N. Evaluating Reliability of Ultra-Short ECG Indices of Heart Rate Variability in Diabetes Mellitus Patients. J. Diabetes Complicat. 2012, 26, 450–453. [Google Scholar] [CrossRef]
- Nussinovitch, U.; Elishkevitz, K.P.; Katz, K.; Nussinovitch, M.; Segev, S.; Volovitz, B.; Nussinovitch, N. Reliability of Ultra-Short ECG Indices for Heart Rate Variability. Ann. Noninvasive Electrocardiol. 2011, 16, 117–122. [Google Scholar] [CrossRef]
- Hietakoste, S.; Korkalainen, H.; Kainulainen, S.; Sillanmäki, S.; Nikkonen, S.; Myllymaa, S.; Duce, B.; Töyräs, J.; Leppänen, T. Longer Apneas and Hypopneas Are Associated with Greater Ultra-Short-Term HRV in Obstructive Sleep Apnea. Sci. Rep. 2020, 10, 21556. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.S.; Kim, D.K. Diagnostic Efficacy of Ultra-Short Term HRV Analysis in Obstructive Sleep Apnea. J. Pers. Med. 2022, 12, 1494. [Google Scholar] [CrossRef]
- Munoz, M.L.; Van Roon, A.; Riese, H.; Thio, C.; Oostenbroek, E.; Westrik, I.; De Geus, E.J.C.; Gansevoort, R.; Lefrandt, J.; Nolte, I.M.; et al. Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements. PLoS ONE 2015, 10, e0138921. [Google Scholar] [CrossRef] [Green Version]
- Zong, W.; Moody, G.B.; Jiang, D. A Robust Open-Source Algorithm to Detect Onset and Duration of QRS Complexes. Comput. Cardiol. 2003, 30, 737–740. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Cassani, R.; Gagnon, J.F.; Lafond, D.; Tremblay, S.; Falk, T.H. Prediction of Stress and Mental Workload during Police Academy Training Using Ultra-Short-Term Heart Rate Variability and Breathing Analysis. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4530–4533. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Toichi, M.; Sugiura, T.; Murai, T.; Sengoku, A. A New Method of Assessing Cardiac Autonomic Function and Its Comparison with Spectral Analysis and Coefficient of Variation of R-R Interval. J. Auton. Nerv. Syst. 1997, 62, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Applying the Right Statistics: Analyses of Measurement Studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Vesna, I. Understanding Bland Altman Analysis. Biochem. Med. 2009, 19, 10–16. [Google Scholar]
- Lopes, N.; Ribeiro, B. Support Vector Machines (SVMs). Stud. Big Data 2015, 7, 85–105. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Introduction to Machine Learning: K-Nearest Neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E. Explaining Adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [Google Scholar] [CrossRef]
- Magaña, V.C.; Scherz, W.D.; Seepold, R.; Madrid, N.M.; Pañeda, X.G.; Garcia, R. The Effects of the Driver’s Mental State and Passenger Compartment Conditions on Driving Performance and Driving Stress. Sensors 2020, 20, 5274. [Google Scholar] [CrossRef]
- Baek, H.J.; Cho, C.H.; Cho, J.; Woo, J.M. Reliability of Ultra-Short-Term Analysis as a Surrogate of Standard 5-Min Analysis of Heart Rate Variability. Telemed. e-Health 2015, 21, 404–414. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Vargas-Lopez, O.; Perez-Ramirez, C.A.; Valtierra-Rodriguez, M.; Yanez-Borjas, J.J.; Amezquita-Sanchez, J.P. An Explainable Machine Learning Approach Based on Statistical Indexes and Svm for Stress Detection in Automobile Drivers Using Electromyographic Signals. Sensors 2021, 21, 3155. [Google Scholar] [CrossRef]
- Persson, A.; Jonasson, H.; Fredriksson, I.; Wiklund, U.; Ahlstrom, C. Heart Rate Variability for Classification of Alert Versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3316–3325. [Google Scholar] [CrossRef]
Domain | HRV Feature | Unit | Description |
---|---|---|---|
Time | MeanNN | ms | Mean RR interval |
SDNN | ms | Standard deviation of the RR intervals | |
SDSD | ms | The standard deviation of the differences between adjacent RR intervals | |
NN50 | Number of pairs of differences between adjacent RR intervals differing by more than 50 milliseconds | ||
pNN50 | NN50 count divided by the total number of all RR intervals | ||
NN20 | Number of pairs of differences between adjacent RR intervals differing by more than 20 milliseconds | ||
pNN20 | NN20 count divided by the total number of all RR intervals | ||
RMSSD | ms | Square root of the mean of the sum of the squares of the differences between adjacent RR intervals | |
MeanHR | bpm | Mean heart rate | |
SDHR | bpm | Standard deviation of the heart rate | |
Frequency | LF | ms2 | Power of the low frequency band (0.04–0.15 Hz) |
HF | ms2 | Power of the high frequency band (0.15–0.4 Hz) | |
LF/HF | Ratio of the LF to HF | ||
TP | ms2 | Total power of the frequency band (≤0.4 Hz) | |
VLF | ms2 | Power of the very low frequency band (≤0.04 Hz) | |
LFnu | nu | LF power in normalized units | |
HFnu | nu | HF power in normalized units | |
Non-linear | CSI | Cardiac sympathetic index [24] | |
CVI | Cardiac vagal index [24] | ||
SD1 | ms | The standard deviation of the projection of the Poincaré plot on the line perpendicular to the line (y = x) | |
SD2 | ms | The standard deviation of the projection of the Poincaré plot on the line (y = x) | |
SampEn | Sample entropy, which is a measure of complexity for the HRV time series data |
HRV Feature | 30-s | 1-min | 2-min | 3-min | 5-min |
---|---|---|---|---|---|
MeanNN | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SDNN | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SDSD | 0.061 | 0.120 | 0.095 | 0.083 | 0.306 |
NN50 | 0.004 | <0.001 | <0.001 | <0.001 | <0.001 |
pNN50 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
NN20 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
pNN20 | 0.111 | 0.196 | 0.210 | 0.299 | 0.119 |
RMSSD | 0.061 | 0.120 | 0.095 | 0.083 | 0.306 |
MeanHR | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SDHR | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
LF | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
HF | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
LF/HF | 0.046 | 0.031 | 0.013 | 0.067 | 0.020 |
TP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
VLF | 0.003 | 0.011 | 0.001 | <0.001 | <0.001 |
LFnu | 0.001 | 0.002 | 0.001 | 0.006 | 0.001 |
HFnu | 0.001 | 0.002 | 0.001 | 0.006 | 0.001 |
CSI | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CVI | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SD1 | 0.070 | 0.129 | 0.100 | 0.086 | 0.311 |
SD2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SampEn | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
HRV Feature | 30-s | 1-min | 2-min | 3-min | 5-min |
---|---|---|---|---|---|
MeanNN | ↓↓ | ↓↓ | ↓↓ | ↓↓ | ↓↓ |
SDNN | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
SDSD | ↑ | ↑ | ↑ | ↑ | ↑ |
NN50 | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
pNN50 | ↓↓ | ↓↓ | ↓↓ | ↓↓ | ↓↓ |
NN20 | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
pNN20 | ↓ | ↓ | ↓ | ↓ | ↓ |
RMSSD | ↑ | ↑ | ↑ | ↑ | ↑ |
MeanHR | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
SDHR | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
LF | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
HF | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
LF/HF | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
TP | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
VLF | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
LFnu | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
HFnu | ↓↓ | ↓↓ | ↓↓ | ↓↓ | ↓↓ |
CSI | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
CVI | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
SD1 | ↑ | ↑ | ↑ | ↑ | ↑ |
SD2 | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
SampEn | ↓↓ | ↓↓ | ↓↓ | ↓↓ | ↓↓ |
HRV Features | Low Stress | High Stress | ||||||
---|---|---|---|---|---|---|---|---|
30-s vs. 5-min | 1 vs. 5-min | 2 vs. 5-min | 3 vs. 5-min | 30-s vs. 5-min | 1 vs. 5-min | 2 vs. 5-min | 3 vs. 5-min | |
MeanNN | 0.912 * | 0.945 * | 0.969 * | 0.989 * | 0.852 * | 0.887 * | 0.922 * | 0.962 * |
SDNN | 0.793 * | 0.727 * | 0.841 * | 0.920 * | 0.760 * | 0.780 * | 0.908 * | 0.968 * |
SDSD | 0.744 * | 0.852 * | 0.917 * | 0.974 * | 0.414 | 0.571 | 0.800 * | 0.908 * |
NN50 | 0.565 | 0.739 * | 0.840 * | 0.924 * | 0.522 | 0.682 | 0.753 * | 0.872 * |
pNN50 | 0.595 | 0.682 | 0.873 * | 0.953 * | 0.524 | 0.694 | 0.884 * | 0.918 * |
NN20 | 0.745 * | 0.803 * | 0.911 * | 0.950 * | 0.728 * | 0.730 * | 0.839 * | 0.915 * |
pNN20 | 0.564 | 0.673 | 0.870 * | 0.944 * | 0.490 | 0.516 | 0.707 * | 0.839 * |
RMSSD | 0.747 * | 0.854 * | 0.917 * | 0.974 * | 0.416 | 0.571 | 0.800 * | 0.908 * |
MeanHR | 0.890 * | 0.967 * | 0.980 * | 0.993 * | 0.805 * | 0.877 * | 0.916 * | 0.966 * |
SDHR | 0.503 | 0.653 | 0.783 * | 0.880 * | 0.542 | 0.762 * | 0.837 * | 0.960 * |
LF | 0.495 | 0.692 | 0.886 * | 0.943 * | 0.546 | 0.783 * | 0.901 * | 0.952 * |
HF | 0.527 | 0.798 * | 0.769 * | 0.917 * | 0.563 | 0.723 * | 0.841 * | 0.940 * |
LF/HF | 0.576 | 0.758 * | 0.922 * | 0.953 * | 0.344 | 0.520 | 0.740 * | 0.863 * |
TP | 0.532 | 0.679 | 0.795 * | 0.888 * | 0.584 | 0.775 * | 0.905 * | 0.966 * |
VLF | 0.289 | 0.510 | 0.727 * | 0.900 * | 0.518 | 0.649 | 0.819 * | 0.937 * |
LFnu | 0.576 | 0.758 * | 0.922 * | 0.953 * | 0.344 | 0.520 | 0.740 * | 0.863 * |
HFnu | 0.576 | 0.758 * | 0.922 * | 0.953 * | 0.344 | 0.520 | 0.740 * | 0.863 * |
CSI | 0.483 | 0.681 | 0.848 * | 0.887 * | 0.613 | 0.734 * | 0.874 * | 0.948 * |
CVI | 0.596 | 0.756 * | 0.854 * | 0.932 * | 0.559 | 0.754 * | 0.894 * | 0.962 * |
SD1 | 0.745 * | 0.854 * | 0.917 * | 0.974 * | 0.415 | 0.572 | 0.801 * | 0.908 * |
SD2 | 0.521 | 0.673 | 0.792 * | 0.913 * | 0.571 | 0.776 * | 0.909 * | 0.965 * |
SampEn | 0.608 | 0.736 * | 0.899 * | 0.950 * | 0.587 | 0.739 * | 0.858 * | 0.907 * |
Classifier | Accuracy Mean ± SD (Range) | Sensitivity Mean ± SD (Range) | Specificity Mean ± SD (Range) | F1-Score Mean ± SD (Range) |
---|---|---|---|---|
KNN | 85.0 ± 6.3 (73.3–90.7) | 89.3 ± 6.5 (77.0–93.8) | 77.8 ± 9.2 (66.7–89.9) | 87.7 ± 5.3 (77.8–95.6) |
SVM | 87.5 ± 4.5 (81.3–94.7) | 86.0 ± 6.1 (77.8–93.4) | 91.3 ± 3.6 (85.7–98.4) | 89.7 ± 4.0 (84.8–97.2) |
RF | 81.0 ± 4.2 (73.3–86.7) | 83.0 ± 7.3 (75.0–87.9) | 78.8 ± 10.3 (58.3–90.9) | 84.2 ± 3.4 (78.9–89.5) |
Adaboost | 82.7 ± 9.1 (66.7–93.3) | 86.2 ± 10.7 (65.0–93.4) | 77.7 ± 14.3 (41.7–90.9) | 82.7 ± 9.1 (72.2–95.0) |
Epoch | Accuracy Mean ± SD (Range) | Sensitivity Mean ± SD (Range) | Specificity Mean ± SD (Range) | F1-Score Mean ± SD (Range) |
---|---|---|---|---|
30-s | 85.0 ± 7.4 (75.0–95.3) | 82.8 ± 11.7 (55.6–88.2) | 81.7 ± 13.1 (60.0–90.1) | 86.6 ± 7.6 (68.9–95.4) |
1-min | 84.3 ± 5.2 (75.4–88.3) | 78.0 ± 8.6 (71.2–87.5) | 86.1 ± 8.1 (76.4–94.7) | 82.1 ± 5.4 (68.8–87.2) |
2-min | 84.7 ± 5.3 (76.0–89.0) | 83.8 ± 8.7 (69.0–94.7) | 72.4 ± 7.0 (60.0–81.8) | 82.4 ± 5.2 (72.7–90.0) |
3-min | 85.3 ± 4.1 (78.7–92.0) | 78.1 ± 6.4 (66.7–87.5) | 91.3 ± 3.6 (85.7–92.7) | 85.2 ± 4.1 (77.4–91.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Jiao, Y.; Du, C.; Zhang, X.; Chen, X.; Xu, F.; Jiang, C. Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions. Entropy 2023, 25, 194. https://doi.org/10.3390/e25020194
Liu K, Jiao Y, Du C, Zhang X, Chen X, Xu F, Jiang C. Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions. Entropy. 2023; 25(2):194. https://doi.org/10.3390/e25020194
Chicago/Turabian StyleLiu, Kun, Yubo Jiao, Congcong Du, Xiaoming Zhang, Xiaoyu Chen, Fang Xu, and Chaozhe Jiang. 2023. "Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions" Entropy 25, no. 2: 194. https://doi.org/10.3390/e25020194
APA StyleLiu, K., Jiao, Y., Du, C., Zhang, X., Chen, X., Xu, F., & Jiang, C. (2023). Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions. Entropy, 25(2), 194. https://doi.org/10.3390/e25020194