A Modified Multiplicative Thinning-Based INARCH Model: Properties, Saddlepoint Maximum Likelihood Estimation, and Application
Abstract
:1. Introduction
2. A Multiplicative Thinning-Based INARCH Model
3. Parameter Estimation
3.1. Saddlepoint Maximum Likelihood Estimation
3.2. Asymptotic Properties of the SPMLE
3.3. Simulation Study
4. A Real Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Details of SPMLE
Appendix A.2. Derivatives of the Quasi-Likelihood Function
Appendix A.3. Proof of Theorem 1
- (i)
- (ii)
- is continuous in .
- (iii)
- It exists such that a.s., then .
- (iv)
- Any has a neighbourhood such that
Appendix A.4. Proof of the Positive Definiteness of Σ
Appendix A.5. Lemmas for the Proof of Theorem 2
Appendix A.6. Proof of Theorem 2
References
- McKenzie, E. Some simple models for discrete variate time series. Water Resour. Bull. 1985, 21, 645–650. [Google Scholar] [CrossRef]
- Al-Osh, M.A.; Alzaid, A.A. First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 1987, 8, 261–275. [Google Scholar] [CrossRef]
- Al-Osh, M.A.; Alzaid, A.A. Integer-valued moving average (INMA) process. Stat. Pap. 1988, 29, 281–300. [Google Scholar] [CrossRef]
- McKenzie, E. Some ARMA models for dependent sequences of Poisson counts. Adv. Appl. Probab. 1988, 20, 822–835. [Google Scholar] [CrossRef]
- Ferland, R.; Latour, A.; Oraichi, D. Integer-valued GARCH process. J. Time Ser. Anal. 2006, 27, 923–942. [Google Scholar] [CrossRef]
- Steutel, F.W.; van Harn, K. Discrete analogues of self-decomposability and stability. Ann. Probab. 1979, 7, 893–899. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, F. A new minification integer-valued autoregressive process driven by explanatory variables. Aust. N. Z. J. Stat. 2022, 64, 478–494. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, F.; Deng, D. A mixed generalized Poisson INAR model with applications. J. Stat. Comput. Simul. 2023, forthcoming. [Google Scholar] [CrossRef]
- Hu, X. Volatility Estimation for Integer-Valued Financial Time Series. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2016. [Google Scholar]
- Liu, M.; Zhu, F.; Zhu, K. Modeling normalcy-dominant ordinal time series: An application to air quality level. J. Time Ser. Anal. 2022, 43, 460–478. [Google Scholar] [CrossRef]
- Weiß, C.H.; Zhu, F.; Hoshiyar, A. Softplus INGARCH models. Stat. Sin. 2022, 32, 1099–1120. [Google Scholar] [CrossRef]
- Weiß, C.H. An Introduction to Discrete-Valued Time Series; John Wiley & Sons: Chichester, UK, 2018. [Google Scholar]
- Davis, R.A.; Fokianos, K.; Holan, S.H.; Joe, H.; Livsey, J.; Lund, R.; Pipiras, V.; Ravishanker, N. Count time series: A methodological review. J. Am. Stat. Assoc. 2021, 116, 1533–1547. [Google Scholar] [CrossRef]
- Aknouche, A.; Scotto, M. A multiplicative Thinning-Based Integer-Valued GARCH Model. Working Paper. 2022. Available online: https://mpra.ub.uni-muenchen.de/112475 (accessed on 17 January 2023).
- Daniels, H.E. Saddlepoint approximations in statistics. Ann. Math. Stat. 1954, 25, 631–650. [Google Scholar] [CrossRef]
- Field, C.; Ronchetti, E. Small sample asymptotics. In Institute of Mathematical Statistics Lecture Notes—Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1990. [Google Scholar]
- Jensen, J.L. Saddlepoint Approximations; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Butler, R.W. Saddlepoint Approximations with Applications; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Pedeli, X.; Davison, A.C.; Fokianos, K. Likelihood estimation for the INAR(p) model by saddlepoint approximation. J. Am. Stat. Assoc. 2015, 110, 1229–1238. [Google Scholar] [CrossRef]
- Francq, C.; Zakoïan, J.M. Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 2004, 10, 605–637. [Google Scholar] [CrossRef]
- Aknouche, A.; Francq, C. Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models. J. Econom. 2023. forthcoming. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, F. A new GJR-GARCH model for Z-valued time series. J. Time Ser. Anal. 2022, 43, 490–500. [Google Scholar] [CrossRef]
- Straumann, D. Estimation in Conditionally Heteroscedastic Time Series Models; Springer: Berlin, Germany, 2005. [Google Scholar]
- Hu, X.; Andrews, B. Integer-valued asymmetric GARCH modeling. J. Time Ser. Anal. 2021, 42, 737–751. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Davis, R.A.; Knight, K.; Liu, J. M-estimation for autoregressions with infinite variance. Stoch. Process. Their Appl. 1992, 40, 145–180. [Google Scholar] [CrossRef] [Green Version]
Model | ||||||
---|---|---|---|---|---|---|
A1 | m = 3 | n = 100 | Mean | 0.6069 | 0.5356 | 0.3569 |
MADE | 0.3681 | 0.2866 | 0.2510 | |||
n = 200 | Mean | 0.5722 | 0.5026 | 0.3952 | ||
MADE | 0.3557 | 0.2434 | 0.2243 | |||
n = 500 | Mean | 0.6436 | 0.4888 | 0.4140 | ||
MADE | 0.2724 | 0.1287 | 0.1005 | |||
A2 | m = 8 | n = 100 | Mean | 0.7782 | 0.5076 | 0.4750 |
MADE | 0.2533 | 0.2752 | 0.3007 | |||
n = 200 | Mean | 0.7935 | 0.5161 | 0.4701 | ||
MADE | 0.2318 | 0.2527 | 0.2778 | |||
n = 500 | Mean | 0.8703 | 0.5170 | 0.4677 | ||
MADE | 0.1752 | 0.2155 | 0.2390 |
Model | ||||||
---|---|---|---|---|---|---|
B1 | m = 4 | n = 100 | Mean | 0.7821 | 0.2930 | 0.2870 |
MADE | 0.1195 | 0.1499 | 0.1766 | |||
n = 200 | Mean | 0.8190 | 0.3611 | 0.3185 | ||
MADE | 0.1121 | 0.1425 | 0.1640 | |||
n = 500 | Mean | 0.8456 | 0.3610 | 0.3298 | ||
MADE | 0.0601 | 0.1331 | 0.1414 | |||
B2 | m = 6 | n = 100 | Mean | 0.4718 | 0.2086 | 0.3811 |
MADE | 0.1965 | 0.1466 | 0.1463 | |||
n = 200 | Mean | 0.5186 | 0.2632 | 0.5080 | ||
MADE | 0.1607 | 0.1198 | 0.1412 | |||
n = 500 | Mean | 0.5468 | 0.2874 | 0.4896 | ||
MADE | 0.1415 | 0.1050 | 0.0770 |
PMthINARCH(3) | AIC | BIC | ||||
0.3242 | 0.5214 | 0.1945 | 0.0842 | 1395.296 | 1413.613 | |
GMthINARCH(3) | AIC | BIC | ||||
0.4904 | 0.2532 | 0.2155 | 0.2392 | 1402.472 | 1420.789 | |
PINAR(3) | AIC | BIC | ||||
0.1335 | 0.4116 | 0.3901 | 1572.806 | 1586.544 | ||
INARCH(3) | AIC | BIC | ||||
8.5670 | 0.1140 | 0.1379 | 0.1009 | 1524.638 | 1542.955 |
Methods of Forecast | PMthINARCH | GMthINARCH | PINAR | |
---|---|---|---|---|
In-sample | C1 | 15.30 | 16.80 | 17.40 |
C2 | 15.87 | 17.67 | 18.40 | |
C3 | 16.65 | 20.70 | 21.90 | |
Out-of-sample | D1 | 17.50 | 17.70 | 22.50 |
D2 | 19.47 | 19.80 | 23.80 | |
D3 | 20.50 | 25.25 | 27.50 |
Methods of Forecast | SPMLE | 2SWLSE | |
---|---|---|---|
In-sample | C1 | 15.30 | 16.20 |
C2 | 15.87 | 17.20 | |
C3 | 16.65 | 18.55 | |
Out-of-sample | D1 | 17.50 | 18.60 |
D2 | 19.47 | 21.67 | |
D3 | 20.50 | 22.70 |
Methods of Forecast | SPMLE | 2SWLSE | |
---|---|---|---|
In-sample | C1 | 16.80 | 17.20 |
C2 | 17.67 | 18.07 | |
C3 | 20.70 | 21.05 | |
Out-of-sample | D1 | 17.70 | 19.90 |
D2 | 19.80 | 22.87 | |
D3 | 25.25 | 26.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, Q.; Zhu, F. A Modified Multiplicative Thinning-Based INARCH Model: Properties, Saddlepoint Maximum Likelihood Estimation, and Application. Entropy 2023, 25, 207. https://doi.org/10.3390/e25020207
Xu Y, Li Q, Zhu F. A Modified Multiplicative Thinning-Based INARCH Model: Properties, Saddlepoint Maximum Likelihood Estimation, and Application. Entropy. 2023; 25(2):207. https://doi.org/10.3390/e25020207
Chicago/Turabian StyleXu, Yue, Qi Li, and Fukang Zhu. 2023. "A Modified Multiplicative Thinning-Based INARCH Model: Properties, Saddlepoint Maximum Likelihood Estimation, and Application" Entropy 25, no. 2: 207. https://doi.org/10.3390/e25020207
APA StyleXu, Y., Li, Q., & Zhu, F. (2023). A Modified Multiplicative Thinning-Based INARCH Model: Properties, Saddlepoint Maximum Likelihood Estimation, and Application. Entropy, 25(2), 207. https://doi.org/10.3390/e25020207