Inverted Oscillator Quantum States in the Probability Representation
Abstract
:1. Introduction
2. Radon Transform and Quantizer–Dequantizer Operators
3. Inverted Oscillator
4. Tomograms of Evolving States of the Inverted Oscillator Prepared Initially in the Potential of the Usual Oscillator
5. Tomograms of Inverted Oscillator States
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 384, 361–376. [Google Scholar] [CrossRef]
- Landau, L. Das Da¨mpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [Google Scholar] [CrossRef]
- von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1, 245–272. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1981; ISBN 9780198520115. [Google Scholar]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic Tomography as Classical Approach to Quantum Systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Modern Phys. 2020, 17, 2050167. [Google Scholar] [CrossRef]
- Berra–Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [Google Scholar] [CrossRef]
- Przhiyalkovskiy, Y.V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301. [Google Scholar] [CrossRef]
- Ullinger, F.; Zimmermann, M.; Schleich, W.P. The logarithmic phase singularity in the inverted harmonic oscillator. AVS Quantum Sci. 2022, 4, 024402. [Google Scholar] [CrossRef]
- Subramanyan, V.; Hegde, S.S.; Vishveshwara, S.; Bradlyn, B. Physics of the Inverted Harmonic Oscillator: From the lowest Landau level to event horizons. Ann. Phys. 2021, 435, 168470. [Google Scholar] [CrossRef]
- Wöger, W.; King, H.; Glauber, R.J.; Haus, J.W. Spontaneous generation of coherent optical beats. Phys. Rev. A 1986, 34, 4859. [Google Scholar] [CrossRef] [PubMed]
- Vourdas, A.; Bishop, F. Quantum systems at negative temperatures: A holomorphic approach based on coherent states. J. Phys. A Math. Gen. 1998, 31, 8563. [Google Scholar] [CrossRef] [Green Version]
- Yuce, C.; Kilic, A.; Coruh, A. Inverted oscillator. Phys. Scr. 2006, 74, 114. [Google Scholar] [CrossRef] [Green Version]
- Yuce, C. Quantum inverted harmonic potential. Phys. Scr. 2021, 96, 105006. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G.; Vitale, P. Star Products, Duality and Double Lie Algebras. Phys. Lett. A 2007, 360, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Radon, J. Uber die Bestimmung von Funktionen durch ihre Integralwerte Langs Gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipz. 1917, 69, 262–277. [Google Scholar]
- Man’ko, O.V.; Man’ko, V.I. Quantum States in Probability Representation and Tomography. J. Russ. Laser Res. 1997, 18, 407–444. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum Tomography Twenty Years Later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Man’ko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems. In Proceedings of the P.N. Lebedev Physical Institute; Nova Science: Commack, NY, USA, 1989; Volume 183, ISBN 0-941743-49-7. [Google Scholar]
- Maclay, G.J. Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts. Symmetry 2020, 12, 1323. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Vilela Mendes, R. Noncommutative Time-Frequency Tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Stornaiolo, C.; Ventriglia, F. Groupoids and the tomographic picture of quantum mechanics. Phys. Scr. 2013, 88, 055003. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Two-slit experiment: Quantum and classical probabilities. Phys. Scr. 2015, 90, 1402–4896. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum Postulate vs. Quantum Nonlocality: On the Role of the Planck Constant in Bell’s Argument. Found. Phys. 2021, 51, 16. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Triangle Geometry of the Qubit State in the Probability Representation Expressed in Terms of the Triada of Malevich’s Squares. J. Russ. Laser Res. 2017, 38, 141–149. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man’ko, O.V.; Man’ko, V.I. Inverted Oscillator Quantum States in the Probability Representation. Entropy 2023, 25, 217. https://doi.org/10.3390/e25020217
Man’ko OV, Man’ko VI. Inverted Oscillator Quantum States in the Probability Representation. Entropy. 2023; 25(2):217. https://doi.org/10.3390/e25020217
Chicago/Turabian StyleMan’ko, Olga V., and Vladimir I. Man’ko. 2023. "Inverted Oscillator Quantum States in the Probability Representation" Entropy 25, no. 2: 217. https://doi.org/10.3390/e25020217
APA StyleMan’ko, O. V., & Man’ko, V. I. (2023). Inverted Oscillator Quantum States in the Probability Representation. Entropy, 25(2), 217. https://doi.org/10.3390/e25020217