Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking
Abstract
:1. Introduction
1.1. Motivation
1.2. Contribution in Paper
- (1)
- For path tracking with accurate vehicle state using a Luenberger observer and optimal steering using a ceaseless linear model, a Differential Lyapunov Stochastic Optimal Control (SOC) with customizable Z-matrices is given.
- (2)
- To increase the fault detection rate with the least amount of time required, decision fault tree learning is employed to acquire the unexpected deviation caused by the fault.
- (3)
- Simulations and field tests are used to validate the proposed DLS-DFTL method and the Decision Fault Tree Autonomous Vehicle Fault Detection algorithm.
1.3. Structure of the Paper
2. Related Works
3. Using Decision Fault Tree Learning and Differential Lyapunov Stochastic Analysis
3.1. Adjustable Z-Matrices in Differential Lyapunov Stochastic Optimal Control (SOC)
Algorithm 1. Path tracking and Differential Lyapunov Stochastic Optimal Control Localization |
Input: control input “”, |
Output: Dependable and precise route tracking |
Step 1: Initialize ceaseless coefficients “”; Step 2: Begin; Step 3: For each control input “”; Step 4: Evaluate array of “” state variable using Equation (1); Step 5: Evaluate control output using Equation (2); Step 6: Evaluate ceaseless linear time response using Equation (3); Step 7: Evaluate output response using Equation (4); Step 8: Evaluate state vector for tracking using Equation (5); Step 9: Obtain the error rate using Equation (6); Step 10: Produce adjustable Z-matrix using Equation (7); Step 11: Evaluate Lyapunov function for path tracking using Equation (8); Step 12: End for; Step 13: End. |
3.2. Decision Fault Tree Learning (DFTL)
Algorithm 2. Autonomous Vehicle Fault Detection Using a Decision Fault Tree |
Input: Input “” |
Output: Early fault detection |
Step 1: Begin; Step 2: For each Input “”; Step 3: Acquire payload data and weight using Equations (9) and (10); Step 4: Measure information gain for each vehicle using Equation (11); Step 5: Measure distance between two consecutive points (i.e., ) using Equation (13); Step 6: Evaluate diagnostic rate for identifying faults using Equation (14); Step 7: Return (number of faulty vehicles “”, number of normal vehicles “”); Step 8: End for; Step 9: End. |
4. Performance Evaluation
4.1. Scenario 1: Performance Evaluation of Defect Detection Rate
4.2. Scenario 2: Analysis of Fault Detection Time Performance
4.3. Scenario 3: Loss Rate of Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raouf, I.; Khan, A.; Khalid, S.; Sohail, M.; Azad, M.M.; Kim, H.S. Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey. Mathematics 2022, 10, 3233. [Google Scholar] [CrossRef]
- Qi, H.; Shi, Y.; Li, S.; Tian, Y.; Yu, D.-L.; Gom, J.B. Fault tolerant control for nonlinear systems using sliding mode and adaptive neural network estimator. In Soft Computing; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Chen, L.; Xiao, W.; Li, P.; Zhou, Q. Fault-tolerant Control for Uncertain Vehicle Active Steering Systems with Time-delay and Actuator Fault. Int. J. Control. Autom. Syst. 2019, 17, 2234–2241. [Google Scholar] [CrossRef]
- Liu, R.; Wei, M.; Sang, N.; Wei, J. Research on Curved Path Tracking Control for Four-Wheel Steering Vehicle considering Road Adhesion Coefficient. Math. Probl. Eng. 2020, 2020, 3108589. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, Y.; Zhao, Y.; Yin, G.; Zhang, H.; Wang, K. Trajectory Tracking of Autonomous Vehicle with the Fusion of DYC and Longitudinal–Lateral Control. Chin. J. Mech. Eng. 2019, 32, 16. [Google Scholar] [CrossRef]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hu, J.; Xiong, S.; Zha, J.; Fu, C. Lane Detection and Trajectory Tracking Control of Autonomous Vehicle based on Model Predictive Control. Int. J. Automot. Technol. 2020, 21, 285–295. [Google Scholar] [CrossRef]
- Elliott, D.; Keen, W.; Miao, L. Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. 2019, 6, 109–131. [Google Scholar] [CrossRef]
- Bagloee, S.A.; Tavana, M.; Asadi, M.; Oliver, T. Autonomous vehicles: Challenges, opportunities, and future implications for transportation policies. J. Mod. Transp. 2016, 24, 284–303. [Google Scholar] [CrossRef] [Green Version]
- Pratama, P.S.; Gulakari, A.V.; Setiawan, Y.D.; Kim, D.H.; Kim, H.K.; Kim, S.B. Trajectory Tracking and Fault Detection Algorithm for Automatic Guided Vehicle Based on Multiple Positioning Modules. Int. J. Control. Autom. Syst. 2016, 14, 400–410. [Google Scholar] [CrossRef]
- Fekiha, A.; Seelema, S. Effective fault-tolerant control paradigm for path tracking in autonomous vehicles. Syst. Sci. Control. Eng. 2015, 3, 177–188. [Google Scholar] [CrossRef]
- Kim, J.; Choi, Y.; Park, M.; Lee, S.; Kim, S. Multi-sensor-based detection and tracking of moving objects for relative position estimation in autonomous driving conditions. J. Supercomput. 2019, 76, 8225–8247. [Google Scholar] [CrossRef]
- Lee, U.; Jung, J.; Jung, S.; Shim, D.H. Development of a Self-Driving Car that can handle the adverse weather. Int. J. Automot. Technol. 2018, 19, 191–197. [Google Scholar] [CrossRef]
- Chen, C.; Shu, M.; Wang, Y.; Liu, R. Robust H‘ Control for Path Tracking of Network-Based Autonomous Vehicles. Math. Probl. Eng. 2020, 2020, 2537086. [Google Scholar] [CrossRef] [Green Version]
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Fu, M.; Ni, J.; Li, X.; Hu, J. Path Tracking for Autonomous Race Car Based on G-G Diagram. Int. J. Automot. Technol. 2017, 19, 659–668. [Google Scholar] [CrossRef]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Aparow, V.R.; Kadir, Z.A.; Abidin, A.F.Z. Path tracking controller of an autonomous armoured vehicle using modified Stanley controller optimized with particle swarm optimization. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 104. [Google Scholar] [CrossRef]
- Park, H.-G.; Ahn, K.-K.; Park, M.-K.; Lee, S.-H. Study on Robust Lateral Controller for Differential GPSBased Autonomous Vehicles. Int. J. Precis. Eng. Manuf. 2018, 19, 367–376. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, H.; Chen, L.; Liu, J.; Cai, Y.; Wang, J. Implementation and Development of a Trajectory Tracking Control System for Intelligent Vehicle. J. Intell. Robot. Syst. 2018, 94, 251–264. [Google Scholar] [CrossRef]
- Gul, F.; Rahiman, W.; Alhady, S.S.N. A comprehensive study for robot navigation Techniques. Cogent Eng. 2019, 6, 1632046. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Liu, D.; Xu, J.; Wang, M. Autonomous Navigation and Path Tracking Control on Field Roads in Hilly Areas. J. Sens. 2019, 2019, 6738594. [Google Scholar] [CrossRef] [Green Version]
- Caraffi, C.; Vojır, T.; Trefny, J.; Sochman, J.; Matas, J. A System for Real-time Detection and Tracking of Vehicles from a Single Car-mounted Camera. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012. [Google Scholar]
- Liu, Z.; Jahanshahi, H.; Volos, C.; Bekiros, S.; He, S.; Alassafi, M.O.; Ahmad, A.M. Distributed Consensus Tracking Control of Chaotic Multi-Agent Supply Chain Network: A New Fault-Tolerant, Finite-Time, and Chatter-Free Approach. Entropy 2021, 24, 33. [Google Scholar] [CrossRef]
- Han, K.; Chen, C.; Chen, M.; Wang, Z. Constrained Active Fault Tolerant Control Based on Active Fault Diagnosis and Interpolation Optimization. Entropy 2021, 23, 924. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, C.; Chen, X.; Zhang, K.; Xin, X.; Wei, H. Event-Triggered Adaptive Fault Tolerant Control for a Class of Uncertain Nonlinear Systems. Entropy 2020, 22, 598. [Google Scholar] [CrossRef] [PubMed]
Vehicles | Fault Detection Rate (%) | ||
---|---|---|---|
DLS-DFTL | Neural Estimator-Based Fault Tolerant Control | Fuzzy Control Uncertain Time-Delay Active Steering | |
15 | 80 | 60 | 40 |
30 | 82.55 | 63.55 | 50.35 |
45 | 85.15 | 70.15 | 55.15 |
60 | 90.35 | 73.35 | 60.15 |
75 | 85.25 | 70.25 | 58.35 |
90 | 82.15 | 68.55 | 55.15 |
105 | 84.35 | 70.35 | 60.25 |
120 | 87.15 | 72.55 | 63.15 |
135 | 90.15 | 75 | 65 |
150 | 88.25 | 72.15 | 62.15 |
Frames | Fault Detection Time (%) | ||
---|---|---|---|
DLS-DFTL | Neural Estimator-Based Fault Tolerant Control | Fuzzy Control Uncertain Time-Delay Active Steering | |
25 | 3.375 | 4.625 | 5.375 |
50 | 5.135 | 7.125 | 8.135 |
75 | 6.215 | 9.355 | 12.355 |
100 | 8.535 | 12.515 | 15.135 |
125 | 10.125 | 14.355 | 20.135 |
150 | 11.535 | 17.135 | 21.325 |
175 | 13.325 | 21.235 | 25.535 |
200 | 18.135 | 25.535 | 28.125 |
225 | 21.225 | 30.125 | 32.355 |
250 | 24.325 | 34.325 | 38.525 |
Frames | Loss Rate (%) | ||
---|---|---|---|
DLS-DFTL | Neural Estimator-Based Fault Tolerant Control | Fuzzy Control Uncertain Time-Delay Active Steering | |
25 | 8 | 12 | 16 |
50 | 9.55 | 12.85 | 17.85 |
75 | 9.85 | 13 | 18 |
100 | 10.25 | 13.55 | 18.25 |
125 | 10.55 | 14 | 18.55 |
150 | 11 | 14.35 | 19 |
175 | 11.35 | 14.85 | 20.15 |
200 | 11.85 | 15 | 20.25 |
225 | 12 | 16.15 | 21 |
250 | 12.15 | 16.35 | 22.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bose, S.S.C.; Alfurhood, B.S.; L, G.H.; Flammini, F.; Natarajan, R.; Jaya, S.S. Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking. Entropy 2023, 25, 443. https://doi.org/10.3390/e25030443
Bose SSC, Alfurhood BS, L GH, Flammini F, Natarajan R, Jaya SS. Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking. Entropy. 2023; 25(3):443. https://doi.org/10.3390/e25030443
Chicago/Turabian StyleBose, S. Subash Chandra, Badria Sulaiman Alfurhood, Gururaj H L, Francesco Flammini, Rajesh Natarajan, and Sheela Shankarappa Jaya. 2023. "Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking" Entropy 25, no. 3: 443. https://doi.org/10.3390/e25030443
APA StyleBose, S. S. C., Alfurhood, B. S., L, G. H., Flammini, F., Natarajan, R., & Jaya, S. S. (2023). Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking. Entropy, 25(3), 443. https://doi.org/10.3390/e25030443