On Transmitted Complexity Based on Modified Compound States
Abstract
:1. Introduction
2. Quantum Channels and Entropy and Mutual Entropy for General Quantum Systems
3. Compound States
Modified Compound State through Quantum Markov Process
4. Transmitted Complexity for the Modified Compound States in Dynamical Systems
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, D.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423 + 623–656. [Google Scholar] [CrossRef] [Green Version]
- Von Neumann, J. Die Mathematischen Grundlagen der Quantenmechanik. In Grundlehren der mathematischen Wissenschaft Bd.; Springer: Berlin, Germany, 1968; Volume 38. [Google Scholar]
- Umegaki, H. Conditional expectations in an operator algebra IV(entropy and information). Kodai Math. Sem. Rep. 1962, 14, 59–85. [Google Scholar] [CrossRef]
- Araki, H. Relative entropy of states of von Neumann Algebras. Publ. Res. Inst. Math. Sci. 1976, 11, 809–833. [Google Scholar] [CrossRef] [Green Version]
- Araki, H. Relative entropy for states of von Neumann algebras II. Publ. Res. Inst. Math. Sci. 1977, 13, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, A. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory. Commun. Math. Phys. 1977, 54, 21–32. [Google Scholar] [CrossRef]
- Donald, M.J. On the relative entropy. Commun. Math. Phys. 1985, 105, 13–34. [Google Scholar] [CrossRef]
- Urbanik, K. Joint probability distribution of observables in quantum mechanics. Stud. Math. 1961, 21, 317. [Google Scholar] [CrossRef] [Green Version]
- Ohya, M. On compound state and mutual information in quantum information theory. IEEE Trans. Infor. Theo. 1983, 29, 770–777. [Google Scholar] [CrossRef]
- Ohya, M. Note on quantum probability. L. Nuo. Cimen. 1983, 38, 402–404. [Google Scholar] [CrossRef]
- Accardi, L.; Ohya, M. Compound Channels, Transition Expectations, and Liftings. Appl. Math. Optim. 1999, 39, 33–59. [Google Scholar] [CrossRef]
- Ingarden, R.S.; Kossakowski, A.; Ohya, M. Information Dynamics and Open Systems; Springer-Science + Business Media, B.V.: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Ohya, M. Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 1989, 27, 19–47. [Google Scholar] [CrossRef]
- Ohya, M.; Petz, D. Quantum Entropy and Its Use; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1993; ISSN 0172-5998. [Google Scholar]
- Ohya, M. Complexities and their applications to characterization of chaos. Int. J. Theor. Phys. 1998, 37, 495–505. [Google Scholar] [CrossRef]
- Ohya, M. Fundamentals of quantum mutual entropy and capacity. Open Syst. Inf. Dyn. 1999, 6, 69–78. [Google Scholar] [CrossRef]
- Ohya, M.; Watanabe, N. Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics. Entropy 2010, 12, 1194–1245. [Google Scholar] [CrossRef] [Green Version]
- Ohya, M.; Volovich, I.V. Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-Systems; Springer: Heidelberg, Germany, 2011. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N. A Note on Complexities by Means of Quantum Compound Systems. Entropy 2020, 22, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohya, M. Entropy Transmission in C*-dynamical systems. J. Math. Anal. Appl. 1984, 100, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Mukhamedov, F.; Ohmura, K.; Watanabe, N. Rényi entropy on C*-algebras. J. Stoch. Anal. 2020, 1, 4. [Google Scholar] [CrossRef]
- Muraki, N.; Ohya, M.; Petz, D. Note on entropy of general quantum systems. Open Syst. Inf. Dyn. 1992, 1, 43–56. [Google Scholar] [CrossRef]
- Muraki, N.; Ohya, M. Entropy functionals of Kolmogorov-Sinai type and their limit theorems. Lett. Math. Phys. 1996, 36, 327–335. [Google Scholar] [CrossRef]
- Ohya, M.; Volovich, I.V. On Quantum Capacity and its Bound. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2003, 6, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Belavkin, V.P.; Ohya, M. Quantum entropy and information in discrete entangled states. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2001, 4, 137–160. [Google Scholar] [CrossRef]
- Belavkin, V.P.; Ohya, M. Entanglement, quantum entropy and mutual information. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 2002, A 458, 209–231. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275–278. [Google Scholar] [CrossRef]
- Khrennikov, A. Contextual viewpoint to quantum statistics. J. Math. Phys. 2003, 44, 2471–2478. [Google Scholar] [CrossRef] [Green Version]
- Emch, G.G. Positivity of the K-entropy on non-abelian K-flows. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1974, 29, 241–252. [Google Scholar] [CrossRef]
- Connes, A.; Størmer, E. Entropy for automorphisms of II von Neumann algebras. Acta Math. 1975, 134, 289–306. [Google Scholar] [CrossRef]
- Accardi, L.; Ohya, M.; Watanabe, N. Dynamical entropy through quantum Markov chain. Open Syst. Inf. Dyn. 1997, 4, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Alicki, R.; Fannes, M. Defining quantum dynamical entropy. Lett. Math. Phys. 1994, 32, 75–82. [Google Scholar] [CrossRef]
- Benatti, F. Deterministic Chaos in Infinite Quantum Systems. In Trieste Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Choda, M. Entropy for extensions of Bernoulli shifts, Ergodic Theory Dynam. Systems 1996, 16, 1197–1206. [Google Scholar]
- Connes, A.; Narnhoffer, H.; Thirring, W. Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 1987, 112, 691–719. [Google Scholar] [CrossRef]
- Kossakowski, A.; Ohya, M.; Watanabe, N. Quantum dynamical entropy for completely positive map. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999, 2, 267–282. [Google Scholar] [CrossRef]
- Miyadera, T.; Ohya, M. Quantum Dynamical Entropy of Spin Systems. Rep. Math. Phys. 2005, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M. Dynamical entropy of generalized quantum Markov chains. Lett. Math. Phys. 1994, 32, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, K.; Watanabe, N. Quantum Dynamical Mutual Entropy Based on AOW Entropy. Open Syst. Inf. Dyn. 2019, 26, 1950009. [Google Scholar] [CrossRef]
- Watanabe, N. Note on transmitted complexity for the modified compound states. Int. J. Mod. Phys. A 2022, 37, 2243023. [Google Scholar] [CrossRef]
- Ohya, M. Quantum ergodic channels in operator algebras. J. Math. Anal. Appl. 1981, 84, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Ohya, M. State change and entropies in quantum dynamical systems. Springer Lect. Not. Math. 1985, 1136, 397–408. [Google Scholar]
- Schatten, R. Norm Ideals of Completely Continuous Operators; Springer: Berlin/Heidelberg, Germany, 1960. [Google Scholar]
- Accardi, L.; Frigerio, A.; Lewis, J. Quantum stochastic processes. Publ. Res. Inst. Math. Sci. 1982, 18, 97–133. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, N. On Transmitted Complexity Based on Modified Compound States. Entropy 2023, 25, 455. https://doi.org/10.3390/e25030455
Watanabe N. On Transmitted Complexity Based on Modified Compound States. Entropy. 2023; 25(3):455. https://doi.org/10.3390/e25030455
Chicago/Turabian StyleWatanabe, Noboru. 2023. "On Transmitted Complexity Based on Modified Compound States" Entropy 25, no. 3: 455. https://doi.org/10.3390/e25030455
APA StyleWatanabe, N. (2023). On Transmitted Complexity Based on Modified Compound States. Entropy, 25(3), 455. https://doi.org/10.3390/e25030455