A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection
Abstract
:1. Introduction
2. Chaotic Image Encryption Scheme
- 1.
- All elements of an image can be classified into bit level, pixel level, and image level. This scheme dynamically selects a specific encryption from these three levels to encrypt the image.
- 2.
- Using the chaotic sequence and the designed multi-parallel structure, the design concept of dynamic selection is reflected in the encryption rules that need to be selected and executed for each process.
2.1. Scheme Description
2.2. The Encryption Process
3. Security Analysis
3.1. Equivalent Key Analysis
3.1.1. Analysis of Ciphertext Feedback Mechanism in Diffusion
3.1.2. Diffusion Rule Value Difference Analysis
3.2. Key Space Analysis
4. Simulation Experiments and Performance Analysis
4.1. Histogram Analysis
4.2. Correlation Analysis
4.3. NPCR and UACI Tests
4.4. Global Shannon Entropy and Local Local Shannon Entropy
4.5. Sensitivity Analysis
5. Conclusions
- 1.
- Design a multi-parallel structure to achieve dynamic selection.
- 2.
- Dynamic selection of DNA encoding rules using chaotic sequences.
- 3.
- Calculate the permutation rule according to the pixel position value of the DNA-encoded matrix and perform the corresponding permutation to obtain the permutation image.
- 4.
- The diffusion rule obtained by the ciphertext feedback mechanism is introduced to determine the dynamic diffusion performed, and the image after the diffusion is obtained.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Talhaoui, M.Z.; Wang, X. A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf. Sci. 2021, 550, 13–26. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 2015, 73, 53–61. [Google Scholar] [CrossRef]
- Xu, L.; Gou, X.; Li, Z.; Li, J. A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Opt. Lasers Eng. 2017, 91, 41–52. [Google Scholar] [CrossRef]
- Alawida, M.; Teh, J.S.; Samsudin, A. An image encryption scheme based on hybridizing digital chaos and finite state machine. Signal Process. 2019, 164, 249–266. [Google Scholar] [CrossRef]
- Jain, K.; Aji, A.; Krishnan, P. Medical Image Encryption Scheme Using Multiple Chaotic Maps. Pattern Recognit. Lett. 2021, 152, 356–364. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, L.; Yu, F.; Heidari, A.A.; Wang, M.; Liang, G.; Chen, H. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl.-Based Syst. 2021, 216, 106510. [Google Scholar] [CrossRef]
- Li, C.; Lin, D.; Feng, B.; Lü, J.; Hao, F. Cryptanalysis of a Chaotic Image Encryption Algorithm Based on Information Entropy. IEEE Access 2018, 6, 75834–75842. [Google Scholar] [CrossRef]
- Ye, G.; Zhao, H.; Chai, H. Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dyn. 2016, 83, 2067–2077. [Google Scholar] [CrossRef]
- Farah, M.A.; Farah, A.; Farah, T. An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dyn. 2020, 99, 3041–3064. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, J.; Lai, W.; Liu, L. A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimed. Tools Appl. 2019, 78, 22023–22043. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, S.; Guyeux, C.; Wang, W. Constructing Higher-Dimensional Digital Chaotic Systems via Loop-State Contraction Algorithm. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 3794–3807. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Bao, L.; Chen, C.P. Image encryption using a new parametric switching chaotic system. Signal Process. 2013, 93, 3039–3052. [Google Scholar] [CrossRef]
- Solak, E.; Cokal, C.; Yildiz, O.T.; Biyikoğlu, T. Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 2012, 20, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- Xian, Y.; Wang, X.; Yan, X.; Li, Q.; Wang, X. Image Encryption Based on Chaotic Sub-Block Scrambling and Chaotic Digit Selection Diffusion. Opt. Lasers Eng. 2020, 134, 106202. [Google Scholar] [CrossRef]
- Hua, Z.; Zhu, Z.; Chen, Y.; Li, Y. Color image encryption using orthogonal Latin squares and a new 2D chaotic system. Nonlinear Dyn. 2021, 104, 4505–4522. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. A Multidimensional Chaotic Image Encryption Algorithm based on DNA Coding. Multimed. Tools Appl. 2020, 79, 21579–21601. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Chen, P.; Xiao, L.; Lü, J. Design and virtex-7-based implementation of video chaotic secure communications. Int. J. Bifurc. Chaos 2020, 30, 2050075. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Zhang, Z.; Li, D.D.U.; Lü, J. Design and smartphone implementation of chaotic duplex h. 264-codec video communications. Int. J. Bifurc. Chaos 2021, 31, 2150045. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Xu, C.; Zhang, X.; Iu, H.H. A memristive synapse control method to generate diversified multi-structure chaotic attractors. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2022, 42, 942–955. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y.; Wang, T. Generating n-Scroll Chaotic Attractors From A Memristor-based Magnetized Hopfield Neural Network. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 311–315. [Google Scholar] [CrossRef]
- Alawida, M.; Samsudin, A.; Teh, J.S.; Alkhawaldeh, R.S. A new hybrid digital chaotic system with applications in image encryption. Signal Process. 2019, 160, 45–58. [Google Scholar] [CrossRef]
- Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 2017, 88, 197–213. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 2021, 547, 1154–1169. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Zhang, Y. A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 2021, 138, 106837. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Q.; Du, B. Chaotic color image encryption based on 4D chaotic maps and DNA sequence. Opt. Laser Technol. 2022, 148, 107753. [Google Scholar] [CrossRef]
- Liu, W.; Sun, K.; Zhu, C. A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 2016, 84, 26–36. [Google Scholar] [CrossRef]
- Gan, Z.H.; Chai, X.L.; Han, D.J.; Chen, Y.R. A chaotic image encryption algorithm based on 3-D bit-plane permutation. Neural Comput. Appl. 2019, 31, 7111–7130. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Xu, C.; Yu, F. Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. 2022, 18, 839–8850. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Zhang, X.; Yao, W. Hyperchaotic memristive ring neural network and application in medical image encryption. Nonlinear Dyn. 2022, 110, 841–855. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, C.; Sun, J.; Yu, F. A chaotic image encryption method based on the artificial fish swarms algorithm and the DNA coding. Mathematics 2023, 11, 767. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, C. A New Chaotic Image Encryption Scheme Using Breadth-First Search and Dynamic Diffusion. Int. J. Bifurc. Chaos 2018, 28, 1850047. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zuo, Z. Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms. Opt. Lasers Eng. 2019, 115, 197–207. [Google Scholar] [CrossRef]
- Asgari-Chenaghlu, M.; Balafar, M.A.; Feizi-Derakhshi, M.R. A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, P.; Sun, C.; Zhao, B. Plaintext-Related Dynamic Key Chaotic Image Encryption Algorithm. Entropy 2021, 23, 1159. [Google Scholar] [CrossRef]
- Khan, M.; Masood, F. A novel chaotic image encryption technique based on multiple discrete dynamical maps. Multimed. Tools Appl. 2019, 78, 26203–26222. [Google Scholar] [CrossRef]
- Himeur, Y.; Boukabou, A. A robust and secure key-frames based video watermarking system using chaotic encryption. Multimed. Tools Appl. 2018, 77, 8603–8627. [Google Scholar] [CrossRef]
- Lenstra, A.K.; Verheul, E.R. Selecting cryptographic key sizes. J. Cryptol. 2001, 14, 255–293. [Google Scholar] [CrossRef] [Green Version]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
00-A | 00-A | 00-C | 00-C | 00-G | 00-G | 00-T | 00-T |
01-C | 01-G | 01-A | 01-T | 01-A | 01-T | 01-C | 01-G |
10-G | 10-C | 10-T | 10-A | 10-T | 10-A | 10-G | 10-C |
11-T | 11-T | 11-G | 11-G | 11-C | 11-C | 11-A | 11-A |
Image Size | Name | Plain Image | Cipher Image | ||||
---|---|---|---|---|---|---|---|
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal | ||
Lena | 0.9428 | 0.9143 | 0.9027 | 0.0016 | −0.0034 | −0.0032 | |
Cameraman | 0.9660 | 0.9357 | 0.9074 | −0.0008 | −0.0027 | −0.0027 | |
Peppers | 0.9657 | 0.9410 | 0.9202 | 0.0024 | 0.0019 | −0.0016 | |
4.2.05 | 0.9689 | 0.9599 | 0.9301 | 0.0027 | −0.0011 | −0.0011 | |
4.2.06 | 0.9724 | 0.9681 | 0.9576 | −0.0013 | −0.0114 | −0.0029 | |
4.2.07 | 0.9646 | 0.9615 | 0.9547 | 0.0032 | 0.0018 | −0.0011 |
Image Size | Name | NPCR | UACI | ||||||
---|---|---|---|---|---|---|---|---|---|
Ref. [5] | Ref. [25] | Ref. [38] | Ours | Ref. [5] | Ref. [25] | Ref. [38] | Ours | ||
5.1.09 | 99.603 | 99.6093 | 99.5124 | 99.5712 | 33.552 | 33.4723 | 33.5214 | 33.4249 | |
5.1.10 | 99.636 | 99.6095 | 99.6121 | 99.6094 | 33.453 | 33.4663 | 33.4215 | 33.5303 | |
5.1.11 | 99.942 | 99.6133 | 99.5943 | 99.6262 | 33.586 | 33.4554 | 33.4014 | 33.4093 | |
5.1.12 | 99.792 | 99.6123 | 99.5811 | 99.6109 | 33.453 | 33.4604 | 33.4158 | 33.4529 | |
5.1.13 | 99.792 | 99.6050 | 99.5963 | 99.6292 | 33.520 | 33.4601 | 33.4236 | 33.5056 | |
5.1.14 | 99.6221 | 99.6110 | 99.5945 | 99.6032 | 33.440 | 33.4604 | 33.3951 | 33.4642 | |
Mean value | 99.731 | 99.6102 | 99.5818 | 99.6084 | 33.501 | 33.4625 | 33.4298 | 33.4645 | |
Pass/All | 6/6 | 6/6 | 5/6 | 6/6 | 6/6 | 6/6 | 6/6 | 6/6 | |
5.2.08 | 99.960 | 99.6070 | 99.5858 | 99.6014 | 33.692 | 33.4734 | 33.3978 | 33.3901 | |
5.2.09 | 99.876 | 99.6106 | 99.5812 | 99.6307 | 33.548 | 33.4572 | 33.4182 | 33.5037 | |
5.2.10 | 99.654 | 99.6096 | 99.6100 | 99.6067 | 33.454 | 33.4574 | 33.4263 | 33.4822 | |
7.1.01 | 99.957 | 99.6095 | 99.6028 | 99.5991 | 33.648 | 33.4726 | 33.4474 | 33.4482 | |
7.1.02 | 99.918 | 99.6117 | 99.6078 | 99.6197 | 33.465 | 33.4563 | 33.4326 | 33.5738 | |
7.1.03 | 99.849 | 99.6123 | 99.5811 | 99.6109 | 33.273 | 33.4535 | 33.4836 | 33.4847 | |
7.1.04 | 99.991 | 99.6114 | 99.5946 | 99.6037 | 33.202 | 33.4475 | 33.4782 | 33.5274 | |
7.1.05 | 99.942 | 99.6099 | 99.5937 | 99.6048 | 33.830 | 33.4559 | 33.4716 | 33.4679 | |
7.1.06 | 99.670 | 99.6064 | 99.5912 | 99.6193 | 33.627 | 33.4515 | 33.4365 | 33.4049 | |
7.1.07 | 99.983 | 99.6068 | 99.6014 | 99.6263 | 33.609 | 33.4638 | 33.4313 | 33.4707 | |
7.1.08 | 99.818 | 99.6097 | 99.6013 | 99.6025 | 33.375 | 33.4536 | 33.4460 | 33.4628 | |
7.1.09 | 99.874 | 99.6112 | 99.6148 | 99.5979 | 33.530 | 33.4729 | 33.3856 | 33.4370 | |
7.1.10 | 99.697 | 99.6096 | 99.6097 | 99.6037 | 33.438 | 33.4605 | 33.3941 | 33.5011 | |
boat.512 | 99.715 | 99.6084 | 99.6101 | 99.5972 | 33.374 | 33.4434 | 33.3973 | 33.4173 | |
elaubine.512 | 99.746 | 99.6095 | 99.6185 | 99.6223 | 33.379 | 33.4746 | 33.4104 | 33.4945 | |
gray21.512 | 99.643 | 99.6074 | 99.6034 | 99.6021 | 33.507 | 33.4588 | 33.4089 | 33.4351 | |
numbers.512 | 99.653 | 99.6102 | 99.5941 | 99.6028 | 33.388 | 33.4477 | 33.4561 | 33.4904 | |
ruler.512 | 99.637 | 99.6092 | 99.5945 | 99.59991 | 33.415 | 33.4637 | 33.4635 | 33.3932 | |
Mean value | 99.91 | 99.6095 | 99.5998 | 99.6083 | 33.486 | 33.4691 | 33.4325 | 33.4653 | |
Pass/All | 18/18 | 18/18 | 16/18 | 18/18 | 12/18 | 18/18 | 18/18 | 18/18 | |
5.3.01 | 99.950 | 99.6095 | 99.6032 | 99.6024 | 33.508 | 33.4511 | 33.4392 | 33.4401 | |
5.3.02 | 99.982 | 99.6095 | 99.6108 | 99.6057 | 33.514 | 33.4536 | 33.4547 | 33.4601 | |
7.2.01 | 99.980 | 99.6092 | 99.6036 | 99.6109 | 33.487 | 33.4606 | 33.4301 | 33.4766 | |
Testpat.1k | 99.887 | 99.6098 | 99.5971 | 99.6060 | 33.453 | 33.4632 | 33.4146 | 33.4638 | |
Mean value | 99.95 | 99.6095 | 99.6037 | 99.6063 | 33.491 | 33.4571 | 33.4347 | 33.4602 | |
Pass/All | 4/4 | 4/4 | 3/4 | 4/4 | 4/4 | 4/4 | 3/4 | 4/4 |
Image Size | Name | Plain Images | Cipher Images | ||
---|---|---|---|---|---|
Ref. [14] | Ref. [25] | Ours | |||
5.1.09 | 6.7093 | 7.9966 | 7.9971 | 7.9973 | |
5.1.10 | 7.3118 | 7.9971 | 7.9974 | 7.9973 | |
5.1.11 | 6.4523 | 7.9975 | 7.9969 | 7.9973 | |
5.1.12 | 6.6057 | 7.9972 | 7.9972 | 7.9974 | |
5.1.13 | 1.5483 | 7.9965 | 7.9969 | 7.9970 | |
5.1.14 | 7.3424 | 7.9977 | 7.9974 | 7.9969 | |
Best/All | 2/6 | 1/6 | 3/6 | ||
5.2.08 | 7.5237 | 7.9991 | 7.9993 | 7.9993 | |
5.2.09 | 6.9940 | 7.9992 | 7.9993 | 7.9993 | |
5.2.10 | 5.7056 | 7.9991 | 7.9993 | 7.9993 | |
7.1.01 | 6.0274 | 7.9990 | 7.9991 | 7.9993 | |
7.1.02 | 4.0045 | 7.9991 | 7.9992 | 7.9993 | |
7.1.03 | 5.4957 | 7.9990 | 7.9993 | 7.9993 | |
7.1.04 | 6.1074 | 7.9992 | 7.9993 | 7.9992 | |
7.1.05 | 6.5632 | 7.9992 | 7.9992 | 7.9993 | |
7.1.06 | 6.6953 | 7.9992 | 7.9993 | 7.9992 | |
7.1.07 | 5.9916 | 7.9991 | 7.9993 | 7.9993 | |
7.1.08 | 5.0534 | 7.9990 | 7.9973 | 7.9993 | |
7.1.09 | 6.1898 | 7.9991 | 7.9992 | 7.9994 | |
7.1.10 | 5.9088 | 7.9990 | 7.9973 | 7.9994 | |
boat.512 | 7.1914 | 7.9992 | 7.9994 | 7.9993 | |
elaubine.512 | 7.5060 | 7.9992 | 7.9974 | 7.9993 | |
gray21.512 | 4.3923 | 7.9993 | 7.9994 | 7.9994 | |
numbers.512 | 7.7292 | 7.9994 | 7.9991 | 7.9993 | |
ruler.512 | 0.5000 | 7.9987 | 7.9992 | 7.9993 | |
Best/All | 1/18 | 11/18 | 13/18 | ||
5.3.01 | 7.5237 | 7.9998 | 7.9998 | 7.9998 | |
5.3.02 | 6.8303 | 7.9996 | 7.9998 | 7.9998 | |
7.2.01 | 5.6412 | 7.9996 | 7.9998 | 7.9998 | |
Testpat.1k | 4.4077 | 7.9998 | 7.9998 | 7.9998 | |
Best/All | 2/4 | 4/4 | 4/4 | ||
Total | Best/All | 5/28 | 16/28 | 20/28 |
Image Size | Name | Cipher Images | ||
---|---|---|---|---|
Ref. [5] | Ref. [25] | Ours | ||
5.1.09 | 7.903369 | 7.903154 | 7.902536 | |
5.1.10 | 7.903520 | 7.901680 | 7.901376 | |
5.1.11 | 7.902291 | 7.902725 | 7.902147 | |
5.1.12 | 7.902721 | 7.901605 | 7.902854 | |
5.1.13 | 7.902620 | 7.901269 | 7.902928 | |
5.1.14 | 7.902837 | 7.902341 | 7.902519 | |
Pass/All | 4/6 | 2/6 | 5/6 | |
5.2.08 | 7.902793 | 7.902012 | 7.902181 | |
5.2.09 | 7.902972 | 7.902484 | 7.902475 | |
5.2.10 | 7.902464 | 7.902833 | 7.902317 | |
7.1.01 | 7.903339 | 7.902047 | 7.902209 | |
7.1.02 | 7.902649 | 7.902568 | 7.902591 | |
7.1.03 | 7.902493 | 7.902022 | 7.902006 | |
7.1.04 | 7.903261 | 7.902398 | 7.902412 | |
7.1.05 | 7.902714 | 7.902568 | 7.902623 | |
7.1.06 | 7.902563 | 7.902022 | 7.902171 | |
7.1.07 | 7.903185 | 7.902398 | 7.902364 | |
7.1.08 | 7.902805 | 7.902137 | 7.901936 | |
7.1.09 | 7.903070 | 7.902142 | 7.902964 | |
7.1.10 | 7.902929 | 7.902171 | 7.902373 | |
boat.512 | 7.902697 | 7.902046 | 7.902267 | |
elaubine.512 | 7.902755 | 7.902632 | 7.903213 | |
gray21.512 | 7.903661 | 7.902718 | 7.901961 | |
numbers.512 | 7.902545 | 7.902067 | 7.901972 | |
ruler.512 | 7.902896 | 7.902004 | 7.902361 | |
Past/All | 13/18 | 18/18 | 17/18 | |
5.3.01 | 7.902934 | 7.902057 | 7.902480 | |
5.3.02 | 7.902843 | 7.902396 | 7.902249 | |
7.2.01 | 7.903238 | 7.902330 | 7.902438 | |
Testpat.1k | 7.902715 | 7.9998 | 7.9998 | |
Past/All | 3/4 | 4/4 | 4/4 | |
Total | Past/All | 20/28 | 24/28 | 26/28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, Q.; Fan, L.; Yu, S. A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection. Entropy 2023, 25, 476. https://doi.org/10.3390/e25030476
Chen X, Wang Q, Fan L, Yu S. A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection. Entropy. 2023; 25(3):476. https://doi.org/10.3390/e25030476
Chicago/Turabian StyleChen, Xin, Qianxue Wang, Linfeng Fan, and Simin Yu. 2023. "A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection" Entropy 25, no. 3: 476. https://doi.org/10.3390/e25030476
APA StyleChen, X., Wang, Q., Fan, L., & Yu, S. (2023). A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection. Entropy, 25(3), 476. https://doi.org/10.3390/e25030476