Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion
Abstract
:1. Introduction
2. Variational Bayesian Inference
3. Bernoulli–Gaussian-Inverse Gamma Modeling and SBL(BGiG) Algorithm
3.1. Update Rules of SBL(BGiG) Using VB Inference
- Update rule for the support vector
- Update rule for the solution value matrix
- Update rule for
- Update rule for the solution precision
- Update rule for the noise precision
Algorithm 1: SBL(BGiG) Algorithm |
Set the hyperparameters, i.e., (), (), and () % Variables Initialization Draw and from (5) Draw and from (6) Draw from (7) t = 1 % Iterator Compute from (19) and set % Main Loop for Estimations While. For example . Compute from (8), % (Support vector component ) Compute and from (10) % (Solution-value matrix component) Compute and from (13) % (Parameters of the hyperprior ) t Compute from (14) % (Precision on the solution) Compute from (16) % (Precision on the noise) Compute from (19) and then t = t + 1 End While |
3.2. Issues with SBL(BGiG)
4. Gaussian-Inverse Gamma Modeling and SBL(GiG) Algorithm
4.1. Update Rules of SBL(GiG) Using VB Inference
- Update rule for the precision on using VB
- Update rule for the noise precision using VB
- Update rule for the solution vector using VB
Algorithm 2: SBL(GiG) Algorithm |
Set the hyperparameters, i.e., () and () % Variables’ Initialization Draw and from (21) Draw from (7) t = 1 % Iterator % Main Loop for Estimations t = 1 While. For example . Compute and from (26) % (Solution-value matrix component) Compute from (22) % (Precisions on the solution) Compute from (23) % (Precision on the noise) End While |
4.2. Issues with SBL(GiG)
5. Preprocessing versus Postprocessing and Simulations
5.1. Pre-Processing for the SBL(BGiG) Algorithm
5.2. Post-Processing for the SBL(GiG) Algorithm
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Bernoulli–Gaussian-Inverse-Gamma Modeling and the SBL(BGiG)
- Update rule for the precision of the solution value vector
- Update rule for the noise precision
- Update rule for
- Update rule for the solution vector
- Update rule for the support vector
- Stopping rule
Appendix A.2. Gaussian-Inverse-Gamma Modeling and the SBL(GiG)
- Update rule for the precision of the nth component of the solution vector
- Update rule for the noise precision
- Update rule for the solution vector
- Stopping rule
References
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Duarte, M.; Davenport, M.; Takhar, D.; Laska, J.; Sun, T.; Kelly, K.; Baraniuk, R. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, W.; Haupt, J.; Sayeed, A.; Nowak, R. Compressed channel sensing: A new approach to estimating sparse multipath channels. Proc. IEEE 2010, 98, 1058–1076. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef]
- Kutynoik, G. Theory and applications of compressed sensing. GAMM-Mitteilungen 2013, 36, 79–101. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Ding, P.; Li, B. Compressive sensing reconstruction of correlated images using joint regularization. IEEE Signal Process. Lett. 2016, 23, 449–453. [Google Scholar] [CrossRef]
- Wijewardhana, U.L.; Codreanu, M.; Latva-aho, M. Bayesian method for image recovery from block compressive sensing. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 379–383. [Google Scholar]
- Qaisar, S.; Bilal, R.M.; Iqbal, W.; Naureen, M.; Lee, S. Compressive sensing: From theory to applications, a survey. Commun. Netw. J. 2013, 15, 443–456. [Google Scholar] [CrossRef]
- Mishali, M.; Eldar, Y.C. Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Trans. Signal Process. 2009, 57, 993–1009. [Google Scholar] [CrossRef] [Green Version]
- Mishali, M.; Eldar, Y.C. Xampling: Signal acquisition and processing in unions of subspaces. IEEE Trans. Signal Process. 2011, 59, 4719–4734. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Mishra, K.V.; Eldar, Y.C. Spectrum sharing Radar: Coexistence via xampling. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 1279–1296. [Google Scholar] [CrossRef] [Green Version]
- Aubry, A.; Carotenuto, V.; Maio, A.D.; Govoni, M.A.; Farina, A. Experimental analysis of block-sparsity-based spectrum sensing techniques for cognitive Radar. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 355–370. [Google Scholar] [CrossRef]
- Hwang, S.; Seo, J.; Park, J.; Kim, H.; Jeong, B.J. Compressive sensing-based Radar imaging and subcarrier allocation for joint MIMO OFDM Radar and communication system. Sensors 2021, 21, 2382. [Google Scholar] [CrossRef]
- Rani, M.; Dhok, S.B.; Deshmukh, R.B. A systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access 2018, 6, 4875–4894. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, Q.; Huang, J. Application of wavefield compressive sensing in surface wave tomography. Geophys. J. Int. 2018, 213, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Da Poian, G.; Rozell, C.J.; Bernardini, R.; Rinaldo, R.; Clifford, G.D. Matched filtering for heart rate estimation on compressive sensing ECG measurements. IEEE Trans. Biomed. Eng. 2017, 65, 1349–1358. [Google Scholar] [CrossRef]
- Djelouat, H.; Zhai, X.; Disi, M.A.; Amira, A.; Bensaali, F. System-on-chip solution for patients biometric: A compressive sensing-based approach. IEEE Sens. J. 2018, 18, 9629–9639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wang, S.; Guo, K.; Wang, J. A secure data collection scheme based on compressive sensing in wireless sensor networks. Ad Hoc Netw. 2018, 70, 73–84. [Google Scholar] [CrossRef]
- Sharma, S.K.; Chatzinotas, S.; Ottersten, B. Compressive sparsity order estimation for wideband cognitive radio receiver. IEEE Trans. Signal Process. 2014, 62, 4984–4996. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Wang, Y. Statistical interpolation of spatially varying but sparsely measured 3D geo-data using compressive sensing and variational Bayesian inference. Math. Geosci. 2021, 53, 1171–1199. [Google Scholar] [CrossRef]
- Han, R.; Bai, L.; Zhang, W.; Liu, J.; Choi, J.; Zhang, W. Variational inference based sparse signal detection for next generation multiple access. IEEE J. Sel. Areas Commun. 2022, 40, 1114–1127. [Google Scholar] [CrossRef]
- Tang, V.H.; Bouzerdoum, A.; Phung, S.L. Variational Bayesian compressive multipolarization indoor Radar imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7459–7474. [Google Scholar] [CrossRef]
- Wan, Q.; Fang, J.; Huang, Y.; Duan, H.; Li, H. A Variational Bayesian inference-inspired unrolled deep network for MIMO detection. IEEE Trans. Signal Process. 2022, 70, 423–437. [Google Scholar] [CrossRef]
- Fang, J.; Shen, Y.; Li, H.; Wang, P. Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals. IEEE Trans. Signal Process. 2015, 63, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Bayesian compressive sensing of sparse signals with unknown clustering patterns. Entropy 2019, 21, 247. [Google Scholar] [CrossRef] [Green Version]
- Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis pursuit selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164. [Google Scholar] [CrossRef]
- Lv, F.; Zhang, C.; Tang, Z.; Zhang, P. Block-sparse signal recovery based on adaptive matching pursuit via spike and slab prior. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020; pp. 1–5. [Google Scholar]
- Worley, B. Scalable mean-field sparse Bayesian learning. IEEE Trans. Signal Process. 2019, 67, 6314–6326. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, J.; Bai, X. Block inverse-free sparse Bayesian learning for block sparse signal recovery. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Hilli, A.A.; Najafizadeh, L.; Petropulu, A. Weighted sparse Bayesian learning (WSBL) for basis selection in linear underdetermined systems. IEEE Trans. Veh. Technol. 2019, 68, 7353–7367. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z. Variational Bayesian inference based robust multiple measurement sparse signal recovery. Digit. Signal Process. 2019, 89, 131–144. [Google Scholar] [CrossRef]
- Bayisa, F.L.; Zhou, Z.; Cronie, O.; Yu, J. Adaptive algorithm for sparse signal recovery. Digit. Signal Process. 2019, 87, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Nayek, R.; Fuentes, R.; Worden, K.; Cross, E.J. On spike-and-slab priors for Bayesian equation discovery of nonlinear dynamical systems via sparse linear regression. Mech. Syst. Signal Process. 2021, 161, 107986. [Google Scholar] [CrossRef]
- Li, J.; Zhou, W.; Cheng, C. Adaptive support-driven Bayesian reweighted algorithm for sparse signal recovery. Signal Image Video Process. 2021, 15, 1295–1302. [Google Scholar] [CrossRef]
- Zong-Long, B.; Li-Ming, S.; Jin-Wei, S. Sparse Bayesian learning using adaptive LASSO priors. Acta Autom. Sin. 2021, 45, 1–16. [Google Scholar]
- Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Blumensath, T.; Davies, M.E. Iterative hard thresholding for compressive sensing. Appl. Comput. Harmon. Anal. 2009, 27, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Stanković, L.; Daković, M.; Vujović, S. Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Process. 2014, 8, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Donoho, D. Basis pursuit. In Proceedings of the 1994 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 1994; pp. 41–44. [Google Scholar]
- Zhou, W.; Zhang, H.T.; Wang, J. An efficient sparse Bayesian learning algorithm based on Gaussian-scale mixtures. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3065–3078. [Google Scholar] [CrossRef]
- Sant, A.; Leinonen, M.; Rao, B.D. General total variation regularized sparse Bayesian learning for robust block-sparse signal recovery. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 5604–5608. [Google Scholar]
- Liu, J.; Wu, Q.; Amin, M.G. Multi-Task Bayesian compressive sensing exploiting signal structures. Signal Process. 2021, 178, 107804. [Google Scholar] [CrossRef]
- He, L.; Chen, H.; Carin, L. Tree-structured compressive sensing with variational Bayesian analysis. IEEE Signal Process. Lett. 2010, 17, 233–236. [Google Scholar]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Hierarchical Bayesian approach for jointly-sparse solution of multiple-measurement vectors. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 1962–1966. [Google Scholar]
- Oikonomou, V.P.; Nikolopoulos, S.; Kompatsiaris, I. A novel compressive sensing scheme under the variational Bayesian framework. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Wang, L.; Zhao, L.; Yu, L.; Wang, J.; Bi, G. Structured Bayesian learning for recovery of clustered sparse signal. Signal Process. 2020, 166, 107255. [Google Scholar] [CrossRef]
- Yu, L.; Wei, C.; Jia, J.; Sun, H. Compressive sensing for cluster structured sparse signals: Variational Bayes approach. IET Signal Process. 2016, 10, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Babacan, S.D.; Nakajima, S.; Do, M.N. Bayesian group-sparse modeling and variational inference. IEEE Trans. Signal Process. 2014, 62, 2906–2921. [Google Scholar] [CrossRef]
- Yu, L.; Sun, H.; Barbot, J.P.; Zheng, G. Bayesian compressive sensing for cluster structured sparse signals. Signal Process. 2012, 92, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.R.; Winther, O.; Hansen, L.K. Bayesian inference for structured spike and slab priors. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 1745–1753. [Google Scholar]
- Babacan, S.; Molina, R.; Katsaggelos, A. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef]
- Hernandez-Lobato, D.; Hernandez-Lobato, J.M.; Dupont, P. Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. J. Mach. Learn. Res. 2013, 14, 1891–1945. [Google Scholar]
- Ji, S.; Dunson, D.; Carin, L. Multitask compressive sensing. IEEE Trans. Signal Process. 2009, 57, 92–106. [Google Scholar] [CrossRef]
- Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Sparse Bayesian learning using variational Bayes inference based on a greedy criterion. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 858–862. [Google Scholar]
- Wu, Q.; Fang, S. Structured Bayesian compressive sensing with spatial location dependence via variational Bayesian inference. Digit. Signal Process. 2017, 71, 95–107. [Google Scholar] [CrossRef]
- Wipf, D.P.; Rao, B.D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process. 2007, 55, 3704–3716. [Google Scholar] [CrossRef]
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused LASSO. J. R. Stat. Soc. Ser. B 2005, 67, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Blumensath, T.; Davies, M.E. Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 2010, 4, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Tan, J.; Wang, Z.; Wang, G.; Guo, X. Exploiting the tree-structured compressive sensing of Wavelet coefficients via block sparse Bayesian learning. Electron. Lett. 2018, 54, 975–976. [Google Scholar] [CrossRef]
- Ambat, S.K.; Chatterjee, S.; Hari, K.V. Fusion of greedy pursuits for compressed sensing signal reconstruction. In Proceedings of the 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 1434–1438. [Google Scholar]
- Cao, Z.; Dai, J.; Xu, W.; Chang, C. Fast variational Bayesian inference for temporally correlated sparse signal recovery. IEEE Sigal Process. Lett. 2021, 28, 214–218. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [Google Scholar] [CrossRef]
- Beal, M. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Dissertation, University College London, London, UK, 2003. [Google Scholar]
- Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 2008, 25, 131–142. [Google Scholar] [CrossRef]
- Shekaramiz, M.; Moon, T.K. Compressive sensing via variational Bayesian inference. In Proceedings of the 2020 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 2–3 October 2020; pp. 1–6. [Google Scholar]
- Shekaramiz, M.; Moon, T.K. Sparse Bayesian learning via variational Bayes fused With orthogonal matching pursuit. In Proceedings of the 2022 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 13–14 May 2022; pp. 1–5. [Google Scholar]
- You, C.; Ormerod, J.T.; Mueller, S. On variational Bayes estimation and variational information criteria for linear regression models. Aust. N. Z. J. Stat. 2014, 56, 73–87. [Google Scholar] [CrossRef]
- Tran, M.N.; Nguyen, T.N.; Dao, V.H. A practical tutorial on variational Bayes. arXiv 2021, arXiv:2103.01327. [Google Scholar]
- Fox, C.; Roberts, S. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2011, 38, 85–95. [Google Scholar] [CrossRef]
- Manipur, I.; Manzo, M.; Granata, I.; Giordano, M.; Maddalena, L.; Guarracino, M.R. Netpro2vec: A graph embedding framework for biomedical applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 729–740. [Google Scholar] [CrossRef]
Case 1: | Case 2: | Case 3: | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NMSE (dB) | NMSE (dB) | NMSE (dB) | |||||||||
0.8 | 0.20 | 0 | −2.367 | 0.8 | 0.24 | 0 | −3.109 | 0.8 | 0.72 | 0 | −16.264 |
0.6 | 0.08 | 0 | −1.326 | 0.6 | 0.16 | 0 | −2.197 | 0.6 | 1 | 0 | −5.226 |
0.4 | 0.08 | 0 | −1.181 | 0.4 | 0.08 | 0 | −1.181 | 0.4 | 1 | 1 | −0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekaramiz, M.; Moon, T.K. Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion. Entropy 2023, 25, 511. https://doi.org/10.3390/e25030511
Shekaramiz M, Moon TK. Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion. Entropy. 2023; 25(3):511. https://doi.org/10.3390/e25030511
Chicago/Turabian StyleShekaramiz, Mohammad, and Todd K. Moon. 2023. "Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion" Entropy 25, no. 3: 511. https://doi.org/10.3390/e25030511
APA StyleShekaramiz, M., & Moon, T. K. (2023). Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion. Entropy, 25(3), 511. https://doi.org/10.3390/e25030511