Improved Bayesian Optimization Framework for Inverse Thermal Conductivity Based on Transient Plane Source Method
Abstract
:1. Introduction
2. Numerical Calculation Model
2.1. Transient Heat Conduction of TPS
2.2. Governing Equations
2.3. Boundary and Setting Conditions
3. Thermal Conductivity Identification Based on an Optimization Algorithm
3.1. Bayesian Optimization Algorithm
3.2. Optimization Validation
3.3. A Bayesian Optimization Algorithm with an Adaptive Initial Population
- (1)
- Input the initial range, the accuracy of the range evaluation function, the accuracy of the objective function, and other initial conditions.
- (2)
- Calculate the middle value of the given range and input the range evaluation model to update the range. The updated logic is as follows: if then ; otherwise, .
- (3)
- Determine whether satisfies the precision , and, if so, output the new range; otherwise, return to step (2).
- (4)
- Perform random sampling in the new range and bring the samples into the forward problem model to obtain the training input set and the training output set .
- (5)
- Build and update the agent model based on the Gaussian process.
- (6)
- Maximize the EI acquisition function, obtain the next prediction point , and calculate the objective function value .
- (7)
- Determine whether the value of the objective function satisfies precision ; if so, output the optimization result. Otherwise, return to step (5).
3.4. Genetic Algorithm
4. Analysis and Discussion
4.1. Correctness Verification and Accuracy Comparison
4.2. Bayesian Optimization Results
4.3. Optimization Results after Algorithm Improvement
4.4. Algorithm Comparison
5. Conclusions
- (1)
- The finite element numerical model of TPS, established by comprehensively considering the thickness and heat capacity of the probe, had high computational accuracy. The test results for the four materials showed that the average relative error of FENM was below 1%, and its accuracy was much higher than that of the analytical model, which had an average error of over 5%.
- (2)
- The number of iterations of the Bayesian optimization algorithm (BOA) was susceptible to changes in the range and individuals of the initial population. However, the Bayesian optimization algorithm with an adaptive initial population (BOAAIP) was not affected by the initial population range and individuals, and its calculation results were more stable. The test results of HS (a hypothetical material) showed that the average error of BOAAIP was below 4% and that the algorithm can reach convergence within five iterations, possessing a faster computational speed compared to BOA.
- (3)
- The computational speed of BOAAIP was much faster than that of the genetic algorithm (GA), and both models had the same accuracy. When the thermal conductivity of the solid specimens was below 100 , the relative error of both algorithms was about 3%, but the calculation speed of BOAAIP was three to four times faster than that of GA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Spacing of the nickel heater: | |
Volumetric specific heat capacity, | |
Volume-specific heat capacity, | |
Dimensions of variables | |
Training dataset | |
Objective function | |
Fitness function | |
Range evaluation function | |
Thickness of a layer, | |
Dimensionless time function | |
A measuring point | |
Unit matrix | |
Covariance function | |
Matrix of covariance functions | |
Mean function | |
Heat capacity matrix | |
Thermal conductivity matrix | |
The total number of measuring points | |
Probability distribution | |
Heating power of the probe, | |
Heat load generated, | |
Cylindrical coordinates | |
, , | Three initial population ranges, |
Outer radius of the Kapton layer, | |
Outer radius of the last nickel heater, | |
Outer radius of the specimen, | |
Real number field | |
Moment, | |
Time step, | |
Transient average temperature increase in the probe, | |
Temperature, | |
Transient average temperature obtained using the CFD software, | |
Transient average temperature obtained using the FENM, | |
Covariance function | |
Width of the nickel heater, | |
The parameter variable, i.e., the thermal conductivity of the specimen, | |
Current optimal estimate | |
Lower limit of the variable (thermal conductivity), | |
Upper limit of the variable (thermal conductivity), | |
Middle of the range of the variable (thermal conductivity), | |
Training input set | |
Objective function values with noise | |
Training output set | |
Greek symbols | |
Observation noise | |
The accuracy of the range evaluation function | |
The accuracy of the objective function | |
, | Two hyperparameters |
Source item | |
Thermal diffusivity, | |
Thermal conductivity, | |
The expectation of the Gaussian distribution at | |
Equilibrium parameter | |
Density, | |
Variance | |
The variance of the Gaussian distribution at | |
Dimensionless time | |
The cumulative density function | |
The standard Gaussian probability density function | |
Observation space | |
Subscripts | |
A hypothetical solid specimen | |
Kapton layer | |
Nickel heater | |
Solid specimen | |
Abbreviations | |
AMIP | Analytical model identification program |
BOA | Bayesian optimization algorithm |
BOAAIP | Bayesian optimization algorithm with an adaptive initial population |
CFD | Computational fluid dynamics software |
FENM | Finite element numerical model |
GA | Genetic algorithm |
MCMC | Markov Chain Monte-Carlo |
TPS | Transient planar source |
References
- Harris, A.; Kazachenko, S.; Bateman, R.; Nickerson, J.; Emanuel, M. Measuring the Thermal Conductivity of Heat Transfer Fluids via the Modified Transient Plane Source (MTPS). J. Therm. Anal. Calorim. 2014, 116, 1309–1314. [Google Scholar] [CrossRef]
- Warzoha, R.J.; Fleischer, A.S. Determining the Thermal Conductivity of Liquids Using the Transient Hot Disk Method. Part I: Establishing Transient Thermal-Fluid Constraints. Int. J. Heat Mass Transf. 2014, 71, 779–789. [Google Scholar] [CrossRef]
- Ai, Q.; Hu, Z.-W.; Liu, M.; Xia, X.-L.; Xie, M. Influence of Sensor Orientations on the Thermal Conductivity Measurements of Liquids by Transient Hot Disk Technique. J. Therm. Anal. Calorim. 2017, 128, 289–300. [Google Scholar] [CrossRef]
- Gustavsson, M.; Gustavsson, J.; Gustafsson, S.; Hälldahl, L. Recent Developments and Applications of the Hot Disk Thermal Constants Analyser for Measuring Thermal Transport Properties of Solids. High Temp.-High Press. 2000, 32, 47–51. [Google Scholar] [CrossRef]
- Mihiretie, B.M.; Cederkrantz, D.; Sundin, M.; Rosén, A.; Otterberg, H.; Hinton, Å.; Berg, B.; Karlsteen, M. Thermal Depth Profiling of Materials for Defect Detection Using Hot Disk Technique. AIP Adv. 2016, 6, 085217. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, A.; Atchley, J.; Shrestha, S.; Desjarlais, A.O.; Wang, H. Evaluation of Measuring Thermal Conductivity of Isotropic and Anisotropic Thermally Insulating Materials by Transient Plane Source (Hot Disk) Technique. J. Porous Mater. 2020, 27, 1791–1800. [Google Scholar] [CrossRef]
- Yuan, M.; Diller, T.T.; Bourell, D.; Beaman, J. Thermal Conductivity of Polyamide 12 Powder for Use in Laser Sintering. Rapid Prototyp. J. 2013, 19, 437–445. [Google Scholar] [CrossRef]
- Ridley, M.; Gaskins, J.; Hopkins, P.; Opila, E. Tailoring Thermal Properties of Multi-Component Rare Earth Monosilicates. Acta Mater. 2020, 195, 698–707. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.-J.; Fang, W.-Z.; Dan, D.; Li, Z.-Y.; Tao, W.-Q. A Numerical Study on the Theoretical Accuracy of Film Thermal Conductivity Using Transient Plane Source Method. Appl. Therm. Eng. 2014, 72, 62–69. [Google Scholar] [CrossRef]
- Ahadi, M.; Andisheh-Tadbir, M.; Tam, M.; Bahrami, M. An Improved Transient Plane Source Method for Measuring Thermal Conductivity of Thin Films: Deconvoluting Thermal Contact Resistance. Int. J. Heat Mass Transf. 2016, 96, 371–380. [Google Scholar] [CrossRef]
- Gustafsson, S.E. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials. Rev. Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. ISO: Geneva, Switzerland, 2022.
- Jannot, Y.; Acem, Z. A Quadrupolar Complete Model of the Hot Disc. Meas. Sci. Technol. 2007, 18, 1229. [Google Scholar] [CrossRef] [Green Version]
- Malinarič, S.; Dieška, P. Concentric Circular Strips Model of the Transient Plane Source-Sensor. Int. J. Thermophys. 2015, 36, 692–700. [Google Scholar] [CrossRef]
- Zheng, Q.; Kaur, S.; Dames, C.; Prasher, R.S. Analysis and Improvement of the Hot Disk Transient Plane Source Method for Low Thermal Conductivity Materials. Int. J. Heat Mass Transf. 2020, 151, 119331. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, K.H.; Han, D.I.; Moon, J.H. Numerical Case Study and Modeling for Spreading Thermal Resistance and Effective Thermal Conductivity for Flat Heat Pipe. Case Stud. Therm. Eng. 2022, 31, 101803. [Google Scholar] [CrossRef]
- Li, B.; Wei, W.-N.; Wan, Q.-C.; Peng, K.; Chen, L.-L. Numerical Investigation into the Development Performance of Gas Hydrate by Depressurization Based on Heat Transfer and Entropy Generation Analyses. Entropy 2020, 22, 1212. [Google Scholar] [CrossRef]
- Feng, X.-B.; Liu, Q. Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model. Entropy 2022, 24, 307. [Google Scholar] [CrossRef]
- Mihiretie, B.M.; Cederkrantz, D.; Rosén, A.; Otterberg, H.; Sundin, M.; Gustafsson, S.E.; Karlsteen, M. Finite Element Modeling of the Hot Disc Method. Int. J. Heat Mass Transf. 2017, 115, 216–223. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Q.; Zou, T.; Sun, C.; Xie, M. Analysis of Radiation Effect on Thermal Conductivity Measurement of Semi-Transparent Materials Based on Transient Plane Source Method. Appl. Therm. Eng. 2020, 177, 115457. [Google Scholar] [CrossRef]
- Bording, T.S.; Nielsen, S.B.; Balling, N. Determination of Thermal Properties of Materials by Monte Carlo Inversion of Pulsed Needle Probe Data. Int. J. Heat Mass Transf. 2019, 133, 154–165. [Google Scholar] [CrossRef]
- Castillo, A.G.C.; Gaume, B.; Rouizi, Y.; Quéméner, O.; Glouannec, P. Identification of Insulating Materials Thermal Properties by Inverse Method Using Reduced Order Model. Int. J. Heat Mass Transf. 2021, 166, 120683. [Google Scholar] [CrossRef]
- Kaipio, J.; Fox, C. The Bayesian Framework for Inverse Problems in Heat Transfer. Heat Transf. Eng. 2011, 32, 718–753. [Google Scholar] [CrossRef]
- Orlande, H.R.B.; Fudym, O. Thermophysical Properties Measurement and Identification. In Handbook of Thermal Science and Engineering; Kulacki, F.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–40. ISBN 978-3-319-32003-8. [Google Scholar]
- Karimi, M.; Moradlou, F.; Hajipour, M. Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem. J. Sci. Comput. 2020, 83, 37. [Google Scholar] [CrossRef]
- Daun, K.; França, F.; Larsen, M.; Leduc, G.; Howell, J. Comparison of Methods for Inverse Design of Radiant Enclosures. J. Heat Transf.-Trans. Asme-J. Heat Transf. 2006, 128, 269–282. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F.; Fateev, A.; Clausen, S. An Inverse Radiation Model for Optical Determination of Temperature and Species Concentration: Development and Validation. J. Quant. Spectrosc. Radiat. Transf. 2015, 151, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Helmig, T.; Al-Sibai, F.; Kneer, R. Estimating Sensor Number and Spacing for Inverse Calculation of Thermal Boundary Conditions Using the Conjugate Gradient Method. Int. J. Heat Mass Transf. 2020, 153, 119638. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Malik, M.; Ibrahim, A.H. A Hybrid Conjugate Gradient Based Approach for Solving Unconstrained Optimization and Motion Control Problems. Math. Comput. Simul. 2022, 201, 640–657. [Google Scholar] [CrossRef]
- Sun, S.-C.; Qi, H.; Ren, Y.-T.; Yu, X.-Y.; Ruan, L.-M. Improved Social Spider Optimization Algorithms for Solving Inverse Radiation and Coupled Radiation–Conduction Heat Transfer Problems. Int. Commun. Heat Mass Transf. 2017, 87, 132–146. [Google Scholar] [CrossRef]
- Khan, A.I.; Billah, M.M.; Ying, C.; Liu, J.; Dutta, P. Bayesian Method for Parameter Estimation in Transient Heat Transfer Problem. Int. J. Heat Mass Transf. 2021, 166, 120746. [Google Scholar] [CrossRef]
- Xu, D.; He, Y.; Yu, Y.; Zhang, Q. Multiple Parameter Determination in Textile Material Design:A Bayesian Inference Approach Based on Simulation. Math. Comput. Simul. 2018, 151, 1–14. [Google Scholar] [CrossRef]
- Somasundharam, S.; Reddy, K.S. Inverse Estimation of Thermal Properties Using Bayesian Inference and Three Different Sampling Techniques. Inverse Probl. Sci. Eng. 2017, 25, 73–88. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Z.; Jia, X.; Cai, Y. Inverse Determination of Thermal Conductivity in Lumber Based on Genetic Algorithms. Holzforschung 2016, 70, 235–241. [Google Scholar] [CrossRef]
- Bianco, N.; Iasiello, M.; Mauro, G.M.; Pagano, L. Multi-Objective Optimization of Finned Metal Foam Heat Sinks: Tradeoff between Heat Transfer and Pressure Drop. Appl. Therm. Eng. 2021, 182, 116058. [Google Scholar] [CrossRef]
- Turgut, O.E. Hybrid Chaotic Quantum Behaved Particle Swarm Optimization Algorithm for Thermal Design of Plate Fin Heat Exchangers. Appl. Math. Model. 2016, 40, 50–69. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, K.H.; Kim, H.; Han, D.I. Thermal-Economic Optimization of Plate–Fin Heat Exchanger Using Improved Gaussian Quantum-Behaved Particle Swarm Algorithm. Mathematics 2022, 10, 2527. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, K.H.; Han, D.I.; Lee, C.-H. Cooling Performance Enhancement Study of Single Droplet Impingement on Heated Hole-Patterned Surfaces Using Improved GQPSO Algorithm. Case Stud. Therm. Eng. 2023, 41, 102679. [Google Scholar] [CrossRef]
- Yang, L.; Sun, B.; Sun, X. Inversion of Thermal Conductivity in Two-Dimensional Unsteady-State Heat Transfer System Based on Finite Difference Method and Artificial Bee Colony. Appl. Sci. 2019, 9, 4824. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gil, A.; Leong, P.S.H.; Khor, J.O.; Akhmetov, B.; Tan, W.L.; Rajoo, S.; Cabeza, L.F.; Romagnoli, A. Bayesian Optimization for Effective Thermal Conductivity Measurement of Thermal Energy Storage: An Experimental and Numerical Approach. J. Energy Storage 2022, 52, 104795. [Google Scholar] [CrossRef]
- Kuhn, J.; Spitz, J.; Sonnweber-Ribic, P.; Schneider, M.; Böhlke, T. Identifying Material Parameters in Crystal Plasticity by Bayesian Optimization. Optim. Eng. 2022, 23, 1489–1523. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots. Front. Bioeng. Biotechnol. 2022, 9, 793782. [Google Scholar] [CrossRef] [PubMed]
- Coquard, R.; Coment, E.; Flasquin, G.; Baillis, D. Analysis of the Hot-Disk Technique Applied to Low-Density Insulating Materials. Int. J. Therm. Sci. 2013, 65, 242–253. [Google Scholar] [CrossRef]
- Minkowycz, W.J.; Sparrow, E.M.; Schneider, G.E.; Pletcher, R.H. Handbook of Numerical Heat Transfer; John Wiley & Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Azmi, A. Finite Element Solution of Heat Conduction Problem. Master’s Thesis, Universiti Teknologi Malaysia, Skudai, Malaysia, 2010. [Google Scholar]
- Zhang, B.; Zhang, Y.; Jiang, X. Feature Selection for Global Tropospheric Ozone Prediction Based on the BO-XGBoost-RFE Algorithm. Sci. Rep. 2022, 12, 9244. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures; Bousquet, O., von Luxburg, U., Rätsch, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2004; pp. 63–71. ISBN 978-3-540-28650-9. [Google Scholar]
- Chu, F.; Dai, B.; Lu, N.; Ma, X.; Wang, F. Improved Fast Model Migration Method for Centrifugal Compressor Based on Bayesian Algorithm and Gaussian Process Model. Sci. China Technol. Sci. 2018, 61, 1950–1958. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Bilmes, J.A. A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models; International Computer Science Institute: Berkeley, CA, USA, 1998. [Google Scholar]
- Chang, B.Y.; Naiel, M.A.; Wardell, S.; Kleinikkink, S.; Zelek, J.S. Time-Series Causality with Missing Data. J. Comput. Vis. Imaging Syst. 2020, 6, 1–4. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Run the Solver—MATLAB & Simulink—MathWorks. Available online: https://ww2.mathworks.cn/help/gads/run-the-solver.html (accessed on 14 March 2023).
- Find Global Minimum—MATLAB—MathWorks. Available online: https://ww2.mathworks.cn/help/gads/globalsearch.html (accessed on 14 March 2023).
- Select Optimal Machine Learning Hyperparameters Using Bayesian Optimization—MATLAB Bayesopt—MathWorks. Available online: https://ww2.mathworks.cn/help/releases/R2021a/gads/run-the-solver.html (accessed on 14 March 2023).
- Ramos, N.; Carollo, L.; Lima e Silva, S.M. Contact Resistance Analysis Applied to Simultaneous Estimation of Thermal Properties of Metals. Meas. Sci. Technol. 2020, 31, 105601. [Google Scholar] [CrossRef]
- Carr, J. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 2014; pp. 31–40. [Google Scholar]
- Persson, P.-O.; Strang, G. A Simple Mesh Generator in MATLAB. SIAM Rev. 2004, 46, 329–345. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
0.21/0.21/0.01/6.40/0.02/10 | ||
4.10/1.56 | ||
91.74/0.50 | ||
22.30/0.32 |
Methods | Minimum Function Value | ||
---|---|---|---|
BOA | −0.089 | 0.712 | −1.031 |
bayesopt | −0.016 | 0.776 | −0.968 |
GlobalSearch | −0.089 | 0.712 | −1.031 |
Parameter | Unit | Sample (Granite/Aluminum Oxide/Iron/Aluminum) |
---|---|---|
70 | ||
70 | ||
2.21/3.51/3.46/2.43 | ||
2.90/27.00/76.20/238.00 | ||
1.30/7.69/22.00/97.90 |
Parameter | Unit | Sample (SS1/SS2/SS3/SS4/SS5) |
---|---|---|
70 | ||
70 | ||
2.21/3.50/3.64/3.23/3.43 | ||
2.90/25.60/63.04/107.60/209.40 | ||
1.31/7.31/17.30/33.30/61.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Qi, L.; Lyu, M.; Lai, Y.; Dong, Z. Improved Bayesian Optimization Framework for Inverse Thermal Conductivity Based on Transient Plane Source Method. Entropy 2023, 25, 575. https://doi.org/10.3390/e25040575
Ji H, Qi L, Lyu M, Lai Y, Dong Z. Improved Bayesian Optimization Framework for Inverse Thermal Conductivity Based on Transient Plane Source Method. Entropy. 2023; 25(4):575. https://doi.org/10.3390/e25040575
Chicago/Turabian StyleJi, Hualin, Liangliang Qi, Mingxin Lyu, Yanhua Lai, and Zhen Dong. 2023. "Improved Bayesian Optimization Framework for Inverse Thermal Conductivity Based on Transient Plane Source Method" Entropy 25, no. 4: 575. https://doi.org/10.3390/e25040575
APA StyleJi, H., Qi, L., Lyu, M., Lai, Y., & Dong, Z. (2023). Improved Bayesian Optimization Framework for Inverse Thermal Conductivity Based on Transient Plane Source Method. Entropy, 25(4), 575. https://doi.org/10.3390/e25040575