Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum
Abstract
:1. Introduction
2. The Lattice Schwinger Model
2.1. Dynamical Quantum Phase Transitions
2.2. Ground State Preparation
- and host the “electric field” states of the links;
- The staggered spinless fermions are encoded in and .
2.3. Noise Models
2.4. Trotter Evolution
3. Simulations of Real-Time Dynamics
- (a)
- Single- and two-qubit gates share the same probability parameters , generally different along the three axes;
- (b)
- Single-qubit gates have the same error probability along each noise direction ; two-qubit gates have an analogous property, but are characterized by an independent probability ;
- (c)
- Two parameters and quantify the error probability along both X and Z for single- and two-qubit gates, respectively, while errors along Y are neglected.
- Single- and two-qubit gates are characterized by the same arbitrary parameters ;
- Equal error probabilities in the X and Z directions, but they take generally different values for single-qubit gates () and two-qubit gates ().
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NISQ | Noisy intermediate-scale quantum devices |
QED | Quantum electrodynamics |
DQPT | Dynamical quantum phase transition |
Appendix A
Appendix B
References
- IBM Quantum. Available online: https://quantum-computing.ibm.com/ (accessed on 28 March 2023).
- Bardin, J.; Jeffrey, E.; Lucero, E.; Huang, T.; Naaman, O.; Barends, R.; White, T.; Giustina, M.; Sank, D.; Roushan, P.; et al. A 28 nm Bulk-CMOS 4-to-8GHz <2mW Cryogenic Pulse Modulator for Scalable Quantum Computing. In Proceedings of the 2019 International Solid State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019. [Google Scholar]
- Garcia-Alonso, J.; Rojo, J.; Valencia, D.; Moguel, E.; Berrocal, J.; Murillo, J.M. Quantum Software as a Service Through a Quantum API Gateway. IEEE Internet Comput. 2021, 26, 34–41. [Google Scholar] [CrossRef]
- Martinez, E.A.; Muschik, C.A.; Schindler, P.; Nigg, D.; Erhard, A.; Heyl, M.; Hauke, P.; Dalmonte, M.; Monz, T.; Zoller, P.; et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 2016, 534, 516–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, H.; Keesling, A.; Omran, A.; Bernien, H.; Schwartz, S.; Zibrov, A.S.; Endres, M.; Greiner, M.; Vuletic, V.; Lukin, M.D. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett. 2018, 121, 123603. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.; Beck, K.M.; Debnath, S.; Amini, J.M.; Nam, Y.; Grzesiak, N.; Chen, J.-S.; Pisenti, N.C.; Chmielewski, M.; Collins, C.; et al. Benchmarking an 11-qubit quantum computer. Nat. Comm. 2019, 10, 5464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Crain, S.; Fang, C.; Zhang, B.; Huang, S.; Liang, Q.; Leung, P.H.; Brown, K.R.; Kim, J. High-Fidelity Two-Qubit Gates Using a Microelectromechanical-System-Based Beam Steering System for Individual Qubit Addressing. Phys. Rev. Lett. 2020, 125, 150505. [Google Scholar] [CrossRef]
- Nielsen, E.; Gamble, J.K.; Rudinger, K.; Scholten, T.; Young, K.; Blume-Kohout, R. Gate Set Tomography. Quantum 2021, 5, 557. [Google Scholar] [CrossRef]
- Zhong, H.-S.; Wang, H.; Deng, Y.-H.; Chen, M.-C.; Peng, L.-C.; Luo, Y.-H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 6523. [Google Scholar] [CrossRef]
- Madsen, L.S.; Laudenbach, F.; Askarani, M.F.; Rortais, F.; Vincent, T.; Bulmer, J.F.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins, M.J.; et al. Quantum computational advantage with a programmable photonic processor. Nature 2022, 606, 75–81. [Google Scholar] [CrossRef]
- Magano, D.; Kumar, A.; Kalis, M.; Locans, A.; Glos, A.; Pratapsi, S.; Quinta, G.; Dimitrijevs, M.; Rivoss, A.; Bargassa, P.; et al. Quantum speedup for track reconstruction in particle accelerators. Phys. Rev. D 2022, 105, 076012. [Google Scholar] [CrossRef]
- Delgado, A.; Hamilton, K.E.; Date, P.; Vlimant, J.; Magano, D.; Omar, Y.; Bargassa, P.; Francis, A.; Gianelle, A.; Sestini, L.; et al. Quantum Computing for Data Analysis in High-Energy Physics. arXiv 2022, arXiv:2203.08805. [Google Scholar]
- Bargassa, P.; Cabos, T.; Choi, A.C.O.; Hessel, T.; Cavinato, S. Quantum algorithm for the classification of supersymmetric top quark events. Phys. Rev. D 2021, 104, 096004. [Google Scholar] [CrossRef]
- Pires, D.; Omar, Y.; Seixas, J. Adiabatic Quantum Algorithm for Multijet Clustering in High Energy Physics. arXiv 2020, arXiv:2012.14514. [Google Scholar]
- Felser, T.; Trenti, M.; Sestini, L.; Gianelle, A.; Zuliani, D.; Lucchesi, D.; Montangero, S. Quantum-inspired Machine Learning on high-energy physics data. NPJ Quantum Inf. 2021, 7, 111. [Google Scholar] [CrossRef]
- Rothe, H.J. Lattice Gauge Theories; World Scientific: Singapore, 1992. [Google Scholar]
- Montvay, I.; Münster, G. Quantum Fields on a Lattice; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- DeGrand, T.; DeTar, C. Lattice Methods for Quantum Chromodynamics; World Scientific: Singapore, 2006. [Google Scholar]
- Gattringer, C.; Lang, C.B. Quantum Chromodynamics on the Lattice; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Knechtli, F.; Günther, M.; Peardon, M. Lattice Quantum Chromodynamics Practice Essentials; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gattringer, C.; Langfeld, K. Approaches to the sign problem in lattice field theory. Int. J. Mod. Phys. A 2016, 31, 1643007. [Google Scholar] [CrossRef]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef] [Green Version]
- Endrődi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. The QCD phase diagram at nonzero quark density. J. High Energy Phys. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 2005, 77, 259. [Google Scholar] [CrossRef] [Green Version]
- Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326, 96. [Google Scholar] [CrossRef] [Green Version]
- Orús, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 2014, 349, 117. [Google Scholar] [CrossRef] [Green Version]
- Montangero, S. Introduction to Tensor Network Methods: Numerical Simulations of Low-Dimensional Many-Body Quantum Systems; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Sengupta, R.; Adhikary, S.; Oseledets, I.; Biamonte, J. Tensor networks in machine learning. arXiv 2022, arXiv:2207.02851. [Google Scholar] [CrossRef]
- Magnifico, G.; Felser, T.; Silvi, P.; Montangero, S. Lattice Quantum Electrodynamics in (3+1)-dimensions at finite density with Tensor Networks. Nat. Commun. 2021, 12, 3600. [Google Scholar] [CrossRef] [PubMed]
- Felser, T.; Silvi, P.; Collura, M.; Montangero, S. Two-dimensional quantum-link lattice Quantum Electrodynamics at finite density. Phys. Rev. X 2020, 10, 041040. [Google Scholar] [CrossRef]
- Ercolessi, E.; Facchi, P.; Magnifico, G.; Pascazio, S.; Pepe, F.V. Phase transitions in ℤn gauge models: Towards quantum simulations of the Schwinger-Weyl QED. Phys. Rev. D 2018, 98, 074503. [Google Scholar] [CrossRef] [Green Version]
- Magnifico, G.; Dalmonte, M.; Facchi, P.; Pascazio, S.; Pepe, F.V.; Ercolessi, E. Real Time Dynamics and Confinement in the ℤn Schwinger-Weyl lattice model for 1+1 QED. Quantum 2020, 4, 281. [Google Scholar] [CrossRef]
- Rigobello, M.; Notarnicola, S.; Magnifico, G.; Montangero, S. Entanglement generation in (1+1)D QED scattering processes. Phys. Rev. D 2021, 104, 114501. [Google Scholar] [CrossRef]
- Roffe, J. Quantum error correction: An introductory guide. Cont. Phys. 2019, 60, 226–245. [Google Scholar] [CrossRef] [Green Version]
- Giurgica-Tiron, T.; Hindy, Y.; LaRose, R.; Mari, A.; Zeng, W.J. Digital zero noise extrapolation for quantum error mitigation. In Proceedings of the IEEE International Conference on Quantum Computing and Engineering (QCE), Denver, CO, USA, 12–16 October 2020. [Google Scholar]
- Mari, A.; Shammah, N.; Zeng, W.J. Extending quantum probabilistic error cancellation by noise scaling. Phys. Rev. A 2021, 104, 052607. [Google Scholar] [CrossRef]
- Klco, N.; Dumitrescu, E.F.; McCaskey, A.J.; Morris, T.D.; Pooser, R.C.; Sanz, M.; Solano, E.; Lougovski, P.; Savage, M.J. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 2018, 98, 032331. [Google Scholar] [CrossRef] [Green Version]
- Huffman, E.; Vera, M.G.; Banerjee, D. Toward the real-time evolution of gauge-invariant ℤ2 and U(1) quantum link models on noisy intermediate-scale quantum hardware with error mitigation. Phys. Rev. D 2022, 106, 094502. [Google Scholar] [CrossRef]
- Gustafson, E.; Dreher, P.; Hang, Z.; Meurice, Y. Indexed improvements for real-time Trotter evolution of a (1+1) field theory using NISQ quantum computers. Quantum Sci. Technol. 2021, 6, 045020. [Google Scholar] [CrossRef]
- Javanmard, Y.; Liaubaite, U.; Osborne, T.J.; Santos, L. Quantum simulation of dynamical phase transitions in noisy quantum devices. arXiv 2022, arXiv:2211.08318. [Google Scholar]
- Mueller, N.; Carolan, J.A.; Connelly, A.; Davoudi, Z.; Dumitrescu, E.F.; Yeter-Aydeniz, K. Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory. arXiv 2022, arXiv:2210.03089. [Google Scholar]
- Nguyen, N.H.; Tran, M.C.; Zhu, Y.; Green, A.M.; Alderete, C.H.; Davoudi, Z.; Linke, N.M. Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions. Phys. Rev. X 2022, 3, 020324. [Google Scholar] [CrossRef]
- Schweizer, C.; Grusdt, F.; Berngruber, M.; Barbiero, L.; Demler, E.; Goldman, N.; Bloch, I.; Aidelsburger, M. Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 2019, 15, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Aidelsburger, M.; Barbiero, L.; Bermudez, A.; Chanda, T.; Dauphin, A.; González-Cuadra, D.; Grzybowski, P.R.; Hands, S.; Jendrzejewski, F.; Jünemann, J.; et al. Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A 2021, 380, 20210064. [Google Scholar] [CrossRef]
- Halimeh, J.C.; Hauke, P. Staircase Prethermalization and Constrained Dynamics in Lattice Gauge Theories. arXiv 2020, arXiv:2004.07248. [Google Scholar]
- Halimeh, J.C.; Hauke, P. Origin of staircase prethermalization in lattice gauge theories. arXiv 2020, arXiv:2004.07254. [Google Scholar]
- Halimeh, J.C.; Kasper, V.; Hauke, P. Fate of Lattice Gauge Theories Under Decoherence. arXiv 2020, arXiv:2009.07848. [Google Scholar]
- Halimeh, J.C.; Hauke, P. Diffusive-to-ballistic crossover of symmetry violation in open many-body systems. arXiv 2020, arXiv:2010.00009. [Google Scholar]
- Notarnicola, S.; Ercolessi, E.; Facchi, P.; Marmo, G.; Pascazio, S.; Pepe, F.V. Discrete Abelian gauge theories for quantum simulations of QED. J. Phys. A Math. Theor. 2015, 48, 30FT01. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.P.; Zinner, N.T. Lattice gauge theory and dynamical quantum phase transitions using noisy intermediate-scale quantum devices. Phys. Rev. B 2021, 103, 235103. [Google Scholar] [CrossRef]
- Jensen, R.B.; Pedersen, S.P.; Zinner, N.T. Dynamical quantum phase transitions in a noisy lattice gauge theory. Phys. Rev. B 2022, 105, 224309. [Google Scholar] [CrossRef]
- Shaw, A.F.; Lougovski, P.; Stryker, J.R.; Wiebe, N. Quantum Algorithms for Simulating the Lattice Schwinger Model. Quantum 2020, 4, 306. [Google Scholar] [CrossRef]
- Notarnicola, S.; Collura, M.; Montangero, S. Real-time-dynamics quantum simulation of (1+1)-dimensional lattice QED with Rydberg atoms. Phys. Rev. Res. 2020, 2, 013288. [Google Scholar] [CrossRef] [Green Version]
- Mathis, S.V.; Mazzola, G.; Tavernelli, I. Toward scalable simulations of lattice gauge theories on quantum computers. Phys. Rev. D 2020, 102, 094501. [Google Scholar] [CrossRef]
- Dempsey, R.; Klebanov, I.R.; Pufu, S.S.; Zan, B. Discrete chiral symmetry and mass shift in the lattice Hamiltonian approach to the Schwinger model. Phys. Rev. Res. 2022, 4, 043133. [Google Scholar] [CrossRef]
- Zache, T.V.; Mueller, N.; Schneider, J.T.; Jendrzejewski, F.; Berges, J.; Hauke, P. Dynamical Topological Transitions in the Massive Schwinger Model with a θ Term. Phys. Rev. Lett. 2019, 122, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyl, M. Dynamical quantum phase transitions: A review. Rep. Prog. Phys. 2018, 81, 054001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damme, M.V.; Zache, T.V.; Banerjee, D.; Hauke, P.; Halimeh, J.C. Dynamical quantum phase transitions in spin-SU(1) quantum link models. Phys. Rev. B 2022, 106, 245110. [Google Scholar] [CrossRef]
- Damme, M.V.; Desaules, J.-Y.; Papić, Z.; Halimeh, J.C. The Anatomy of Dynamical Quantum Phase Transitions. arXiv 2022, arXiv:2210.02453. [Google Scholar]
- Chandrasekharan, S.; Wiese, U.-J. Quantum link models: A discrete approach to gauge theories. Nucl. Phys. B 1997, 492, 455. [Google Scholar] [CrossRef]
- Kogut, J.; Susskind, L. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 1975, 11, 2. [Google Scholar] [CrossRef]
- Georgopoulos, K.; Emary, C.; Zuliani, P. Modeling and simulating the noisy behavior of near-term quantum computers. Phys. Rev. A 2021, 104, 062432. [Google Scholar] [CrossRef]
- Lamm, H.; Lawrence, S. Simulation of Nonequilibrium Dynamics on a Quantum Computer. Phys. Rev. Lett. 2018, 121, 170501. [Google Scholar] [CrossRef] [Green Version]
- Khaneja, N.; Glaser, S.J. Cartan decomposition of SU(2n) and control of spin systems. Chem. Phys. 2001, 267, 11–23. [Google Scholar] [CrossRef]
- Khaneja, N.; Brockett, R.; Glaser, S.J. Time optimal control in spin systems. Phys. Rev. A 2001, 63, 032308. [Google Scholar] [CrossRef] [Green Version]
- Vatan, F.; Williams, C. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 2004, 69, 032315. [Google Scholar] [CrossRef] [Green Version]
- Smolin, J.; Gambetta, J.M.; Smith, G. Efficient Method for Computing the Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise. Phys. Rev. Lett. 2012, 108, 070502. [Google Scholar] [CrossRef] [Green Version]
- Kardashin, A.S.; Vlasova, A.V.; Pervishko, A.A.; Yudin, D.; Biamonte, J.D. Quantum-machine-learning channel discrimination. Phys. Rev. A 2022, 106, 032409. [Google Scholar] [CrossRef]
- Kaldenbach, T.N.; Heller, M.; Alber, G.; Stojanović, V.M. Digital quantum simulation of scalar Yukawa coupling: Dynamics following an interaction quench on IBM Q. arXiv 2022, arXiv:2211.02684. [Google Scholar]
- Surace, F.M.; Mazza, P.P.; Giudici, G.; Lerose, A.; Gambassi, A.; Dalmonte, M. Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators. Phys. Rev. X 2020, 10, 021041. [Google Scholar] [CrossRef]
- Amitrano, V.; Roggero, A.; Luchi, P.; Turro, F.; Vespucci, L.; Pederiva, F. Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations. Phys. Rev. D 2023, 107, 023007. [Google Scholar] [CrossRef]
- IonQ. Available online: https://ionq.com/ (accessed on 28 March 2023).
- ReCaS Bari. Available online: https://www.recas-bari.it/index.php/en/ (accessed on 28 March 2023).
- Andersson, E.; Cresser, J.D.; Hall, M.J.W. Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt. 2007, 54, 12. [Google Scholar] [CrossRef] [Green Version]
- Bartolomeo, G.D.; Vischi, M.; Cesa, F.; Wixinger, R.; Grossi, M.; Donadi, S.; Bassi, A. A novel approach to noisy gates for simulating quantum computers. arXiv 2023, arXiv:2301.04173. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomarico, D.; Cosmai, L.; Facchi, P.; Lupo, C.; Pascazio, S.; Pepe, F.V. Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum. Entropy 2023, 25, 608. https://doi.org/10.3390/e25040608
Pomarico D, Cosmai L, Facchi P, Lupo C, Pascazio S, Pepe FV. Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum. Entropy. 2023; 25(4):608. https://doi.org/10.3390/e25040608
Chicago/Turabian StylePomarico, Domenico, Leonardo Cosmai, Paolo Facchi, Cosmo Lupo, Saverio Pascazio, and Francesco V. Pepe. 2023. "Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum" Entropy 25, no. 4: 608. https://doi.org/10.3390/e25040608
APA StylePomarico, D., Cosmai, L., Facchi, P., Lupo, C., Pascazio, S., & Pepe, F. V. (2023). Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum. Entropy, 25(4), 608. https://doi.org/10.3390/e25040608