Application and Development of QKD-Based Quantum Secure Communication
Abstract
:1. Introduction
2. QKD Technology Research Advances
2.1. System Performance Enhancement
2.2. Satellite-Based QKD Experiments
3. QSC Application Exploration in China
3.1. Quantum Encryption and ICT Systems Integration
3.2. Application Schemes of Quantum Keys
3.3. QKD Network Construction and Application
3.4. QSC Application Based on QKD Satellites
4. QSC Standardization in CCSA
4.1. QKD System and Component Standards
4.2. QKD Network Standards
4.3. QSC Application Standards
5. QSC Testing and Verification Practice
5.1. QKD System Test Evaluation
5.2. QKD System Test Evaluation
6. Discussion and Outlook
- Technology: In terms of protocol mechanism, quantum state signals in QKD systems sacrifice the robustness of transmission in exchange for the security of key generation, which is a crucial barrier to further improvement of transmission capability and key rate, and also fundamentally limits their adaptability and reliability in practical environments outside the laboratory. Although the performance of QKD systems based on new protocols such as TF and MDI have been improved, and satellite-based QKD has been proven to be technically feasible, there is still a long way to go for the commercial products based on these protocols and platforms to be applied on a large scale.
- Application: For QKD-based QSC application, firstly, almost-dedicated fiber resources to support deployment of hardware system are needed; secondly, it may involve change or integration of the user’s network architecture, equipment, and service routing; thirdly, highly specialized configuration and maintenance management of QKD systems are also needed; finally, QKD systems are still relatively expensive. All the above issues will become capital expenditure and operating expenses that users have to be concerned about in adopting this technology. QKD technology and system development based on integrated photonics can improve the integration and robustness of the system, while reducing system cost to enhance scalability, which will be very beneficial for expanding QKD applications.
- Standards and Certification: Although important progress has been made in QKD-related standards, much work remains to be done. One of the most significant is credible specification and test verification for practical security proof of QKD systems, which are essential to fully guarantee the ITS advantage and convince customers with high security requirements. In addition, specifying interfaces and protocols for KM layers in QKD networks to facilitate cross-domain interoperability may be another priority for future standardization.
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, V.; Brito, J.P.; Escribano, C.; Menchetti, M.; White, C.; Lord, A.; Wissel, F.; Gunkel, M.; Gavignet, P.; Genay, N.; et al. Quantum technologies in the telecommunications industry. EPJ Quantum Technol. 2021, 8, 19. [Google Scholar] [CrossRef]
- Deutsch, I.H. Harnessing the Power of the Second Quantum Revolution. PRX Quantum 2020, 1, 020101. [Google Scholar] [CrossRef]
- NSTC. National Strategic Overview for Quantum Information Science; NSTC: Washington, DC, USA, 2018. Available online: https://www.quantum.gov/wp-content/uploads/2020/10/2018_NSTC_National_Strategic_Overview_QIS.pdf (accessed on 20 February 2023).
- European Quantum Flagship, Strategic Research and Industry Agenda. 2022. Available online: https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship/sab-strategic-advisory-board/ (accessed on 20 February 2023).
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829–1834. [Google Scholar] [CrossRef] [Green Version]
- Mattle, K.; Weinfurter, H.; Kwiat, P.G.; Zeilinger, A. Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 1996, 76, 4656–4659. [Google Scholar] [CrossRef] [Green Version]
- Long, G.-L.; Deng, F.-G.; Wang, C.; Li, X.-H.; Wen, K.; Wang, W.-Y. Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2007, 2, 251–272. [Google Scholar] [CrossRef]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Martin, V.; Martinez-Mateo, J.; Peev, M. Introduction to Quantum Key Distribution; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 1–17. [Google Scholar]
- Vermeer, M.J.D.; Peet, E.D. Securing Communications in the Quantum Computing Age: Managing the Risks to Encryption; RAND Corporation: Santa Monica, CA, USA, 2020. [Google Scholar] [CrossRef]
- Alagic, G.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.M.; Lichtinger, J.; Liu, Y.K.; Miller, C.A.; Moody, D.; Peralta, R.; et al. Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process; U.S. National Institute of Standards and Technology: Gasburg, MD, USA, 2022.
- Renner, R.; Gisin, N.; Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 2005, 72, 012332. [Google Scholar] [CrossRef] [Green Version]
- Wehner, S.; Elkouss, D.; Hanson, R. Quantum internet: A vision for the road ahead. Science 2018, 362, 9288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, P.; van Dam Kleese, K.; Inder, M.; Thomas, S. From Long-Distance Entanglement to Building a Nationwide Quantum Internet: Report of the DOE Quantum Internet Blueprint Workshop; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2020.
- Lewis, A.M.; Travagnin, M. A Secure Quantum Communications Infrastructure for Europe: Technical Background for a Policy Vision; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Wang, S.; Yin, Z.-Q.; He, D.-Y.; Chen, W.; Wang, R.-Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.-J.; Wang, F.-X.; Zhu, Y.-G.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Yuan, Z.; Murakami, A.; Kujiraoka, M.; Lucamarini, M.; Tanizawa, Y.; Sato, H.; Shields, A.J.; Plews, A.; Takahashi, R.; Doi, K.; et al. 10-Mb/s Quantum Key Distribution. J. Light. Technol. 2018, 36, 3427–3433. [Google Scholar] [CrossRef] [Green Version]
- Aguado, A.; Lopez, V.; Lopez, D.; Peev, M.; Poppe, A.; Pastor, A.; Folgueira, J.; Martin, V. The Engineering of Software-Defined Quantum Key Distribution Networks. IEEE Commun. Mag. 2019, 57, 20–26. [Google Scholar] [CrossRef] [Green Version]
- FG-QIT4N; Standardization Outlook and Technology Maturity: Quantum Key Distribution Network. ITU-T: Geneva, Switzerland, 2021.
- Lewis, A.M.; Travagnin, M. Quantum Key Distribution In-Field Implementations; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.-K.; Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-Z.; Zhang, J.; Yang, D.; Gao, W.-B.; Ma, H.-X.; Yin, H.; Zeng, H.-P.; Yang, T.; Wang, X.-B.; Pan, J.-W. Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding. Phys. Rev. Lett. 2007, 98, 010505. [Google Scholar] [CrossRef] [Green Version]
- Hiroki, T.; Honjo, T.; Tamaki, K.; Tokura, Y. Differential phase shift quantum key distribution. In Proceedings of the 2008 First ITU-T Kaleidoscope Academic Conference—Innovations in NGN: Future Network and Services, Geneva, Switzerland, 12–13 May 2008. [Google Scholar]
- Bacco, D.; Christensen, J.B.; Castaneda, M.A.U.; Ding, Y.; Forchhammer, S.; Rottwitt, K.; Oxenløwe, L.K. Two-dimensional distributed-phase-reference protocol for quantum key distribution. Sci. Rep. 2016, 6, 36756. [Google Scholar] [CrossRef] [Green Version]
- Boaron, A.; Boso, G.; Rusca, D.; Vulliez, C.; Autebert, C.; Caloz, M.; Perrenoud, M.; Gras, G.; Bussières, F.; Li, M.-J.; et al. Secure Quantum Key Distribution over 421 km of Optical Fiber. Phys. Rev. Lett. 2018, 121, 190502. [Google Scholar] [CrossRef] [Green Version]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Minder, M.; Pittaluga, M.; Roberts, G.L.; Lucamarini, M.; Dynes, J.F.; Yuan, Z.L.; Shields, A.J. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 2019, 13, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-B.; Yu, Z.-W.; Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Yu, Z.-W.; Jiang, C.; Hu, X.-L.; Wang, X.-B. Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate. Phys. Rev. A 2020, 101, 042330. [Google Scholar] [CrossRef]
- Jiang, C.; Yu, Z.-W.; Hu, X.-L.; Wang, X.-B. Unconditional Security of Sending or Not Sending Twin-Field Quantum Key Distribution with Finite Pulses. Phys. Rev. Appl. 2019, 12, 024061. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.-T.; Zeng, P.; Liu, H.; Zou, M.; Wu, W.; Tang, Y.-L.; Sheng, Y.-J.; Xiang, Y.; Zhang, W.; Li, H.; et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 2020, 14, 422–425. [Google Scholar] [CrossRef]
- Chen, J.-P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.; Hu, X.-L.; Guan, J.-Y.; Yu, Z.-W.; Xu, H.; Lin, J.; et al. Sending-Or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 2020, 124, 070501. [Google Scholar] [CrossRef] [Green Version]
- Pittaluga, M.; Minder, M.; Lucamarini, M.; Sanzaro, M.; Woodward, R.I.; Li, M.-J.; Yuan, Z.; Shields, A.J. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photonics 2021, 15, 530–535. [Google Scholar] [CrossRef]
- Chen, J.-P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.-J.; Han, Z.-Y.; Ma, S.-Z.; Hu, X.-L.; Li, Y.-H.; Liu, H.; et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics 2021, 15, 570–575. [Google Scholar] [CrossRef]
- Chen, J.-P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhao, D.-F.; Zhang, W.-J.; Chen, F.-X.; Li, H.; You, L.-X.; Wang, Z.; et al. Quantum Key Distribution over 658 km Fiber with Distributed Vibration Sensing. Phys. Rev. Lett. 2022, 128, 180502. [Google Scholar] [CrossRef]
- Aguado, A.; Hugues-Salas, E.; Haigh, P.A.; Marhuenda, J.; Price, A.B.; Sibson, P.; Kennard, J.E.; Erven, C.; Rarity, J.G.; Thompson, M.G.; et al. Secure NFV Orchestration over an SDN-Controlled Optical Network with Time-Shared Quantum Key Distribution Resources. J. Light. Technol. 2017, 35, 1357. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, T.A.; Luis, R.S.; Puttnam, B.J.; Rademacher, G.; Fujiwara, M.; Awaji, Y.; Furukawa, H.; Wada, N.; Takeoka, M.; Sasaki, M. Wavelength Division Multiplexing of 194 Continuous Variable Quantum Key Distribution Channels. J. Light. Technol. 2020, 38, 2214–2218. [Google Scholar] [CrossRef]
- Xavier, G.B.; Lima, G. Quantum information processing with space-division multiplexing optical fibres. Commun. Phys. 2020, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Laudenbach, F.; Pacher, C.; Fung, C.-H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum Cryptography without Switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional Security Proof of Long-Distance Continuous-Variable Quantum Key Distribution with Discrete Modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.; Chin, H.-M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Pi, Y.; Pan, Y.; Shao, Y.; Ma, L.; Zhang, Y.; Yang, J.; Zhang, T.; Huang, W.; et al. Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area. Commun. Phys. 2022, 5, 162. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett. 2022, 47, 3307–3310. [Google Scholar] [CrossRef]
- Cozzolino, D.; Da Lio, B.; Bacco, D. High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges. Adv. Quantum Technol. 2019, 2, 1900038. [Google Scholar] [CrossRef]
- Erhard, M.; Krenn, M.; Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2020, 2, 365. [Google Scholar] [CrossRef]
- Vagniluca, I.; Da Lio, B.; Rusca, D.; Cozzolino, D.; Ding, Y.; Zbinden, H.; Zavatta, A.; Oxenløwe, L.K.; Bacco, D. Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution. Phys. Rev. Appl. 2020, 14, 014051. [Google Scholar] [CrossRef]
- Steinlechner, F.; Ecker, S.; Fink, M.; Liu, B.; Bavaresco, J.; Huber, M.; Scheidl, T.; Ursin, R. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 2017, 8, 15971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, F.; Sit, A.; Hufnagel, F.; Abbas, A.; Zhang, Y.; Heshami, K.; Fickler, R.; Marquardt, C.; Leuchs, G.; Boyd, R.W.; et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express 2018, 26, 22563. [Google Scholar] [CrossRef] [PubMed]
- Sekga, C.; Mafu, M.; Senekane, M. High-dimensional quantum key distribution implemented with biphotons. Sci. Rep. 2023, 13, 1229. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Cao, Y.; Peng, C.-Z.; Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 2022, 94, 035001. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Yang, B.; Liao, S.-K.; Zhang, L.; Shen, Q.; Hu, X.-F.; Wu, J.-C.; Yang, S.-J.; Jiang, H.; Tang, Y.-L.; et al. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photonics 2013, 7, 387–393. [Google Scholar] [CrossRef]
- Pugh, C.J.; Kaiser, S.; Bourgoin, J.-P.; Jin, J.; Sultana, N.; Agne, S.; Anisimova, E.; Makarov, V.; Choi, E.; Higgins, B.L.; et al. Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2017, 2, 024009. [Google Scholar] [CrossRef] [Green Version]
- Oi, D.K.; Ling, A.; Vallone, G.; Villoresi, P.; Greenland, S.; Kerr, E.; Macdonald, M.; Weinfurter, H.; Kuiper, H.; Charbon, E.; et al. CubeSat quantum communications mission. EPJ Quantum Technol. 2017, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Kerstel, E.; Gardelein, A.; Barthelemy, M.; The CSUG Team; Fink, M.; Joshi, S.K.; Ursin, R. Nanobob: A CubeSat mission concept for quantum communication experiments in an uplink configuration. EPJ Quantum Technol. 2018, 5, 6. [Google Scholar] [CrossRef]
- Liao, S.-K.; Cai, W.-Q.; Liu, W.-Y.; Zhang, L.; Li, Y.; Ren, J.-G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.-P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Cao, Y.; Li, Y.-H.; Ren, J.-G.; Liao, S.-K.; Zhang, L.; Cai, W.-Q.; Liu, W.-Y.; Li, B.; Dai, H.; et al. Satellite-To-Ground Entanglement-Based Quantum Key Distribution. Phys. Rev. Lett. 2017, 119, 200501. [Google Scholar] [CrossRef]
- Liao, S.-K.; Cai, W.-Q.; Handsteiner, J.; Liu, B.; Yin, J.; Zhang, L.; Rauch, D.; Fink, M.; Ren, J.-G.; Liu, W.-Y.; et al. Satellite-Relayed Intercontinental Quantum Network. Phys. Rev. Lett. 2018, 120, 030501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Li, Y.-H.; Liao, S.-K.; Yang, M.; Cao, Y.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, S.-L.; et al. Entanglement-based secure quantum cryptography over 1120 kilometres. Nature 2020, 582, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-A.; Zhang, Q.; Chen, T.-Y.; Cai, W.-Q.; Liao, S.-K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.-G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Yin, J.; Cao, Y.; Li, Y.-H.; Liao, S.-K.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, B.; Dai, H.; et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.-G.; Xu, P.; Yong, H.-L.; Zhang, L.; Liao, S.-K.; Yin, J.; Liu, W.-Y.; Cai, W.-Q.; Yang, M.; Li, L.; et al. Ground-to-satellite quantum teleportation. Nature 2017, 549, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Cao, Y.; Li, Y.-H.; Cai, W.-Q.; Liu, W.-Y.; Ren, J.-G.; Liao, S.-K.; Wu, H.-N.; Li, S.-L.; Li, L.; et al. Quantum State Transfer over 1200 km Assisted by Prior Distributed Entanglement. Phys. Rev. Lett. 2022, 128, 170501. [Google Scholar] [CrossRef]
- Xu, P.; Ma, Y.; Ren, J.-G.; Yong, H.-L.; Ralph, T.C.; Liao, S.-K.; Yin, J.; Liu, W.-Y.; Cai, W.-Q.; Han, X.; et al. Satellite testing of a gravitationally induced quantum decoherence model. Science 2019, 366, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Shen, Q.; Wang, C.-Z.; Li, S.-L.; Liu, W.-Y.; Cai, W.-Q.; Liao, S.-K.; Ren, J.-G.; Yin, J.; Chen, Y.-A.; et al. Towards satellite-based quantum-secure time transfer. Nat. Phys. 2020, 16, 848–852. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 2011, 19, 10387–10409. [Google Scholar] [CrossRef] [PubMed]
- Peters, N.A.; Alshowkan, M.; Chapman, J.C.; Evans, P.G.; Hooper, D.A.; Grice, W.P.; Lu, H.-H.; Lukens, J.M.; Pooser, R.C.; Marvinney, C.E.; et al. Quantum Networking and Communications at Oak Ridge National Laboratory. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 2–5 May 2022. [Google Scholar]
- Joshi, C.; Singh, U.K. Information security risks management framework—A step towards mitigating security risks in university network. J. Inf. Secur. Appl. 2017, 35, 128–137. [Google Scholar] [CrossRef]
- Jacak, M.M.; Jóźwiak, P.; Niemczuk, J.; Jacak, J.E. Quantum generators of random numbers. Sci. Rep. 2021, 11, 16108. [Google Scholar] [CrossRef] [PubMed]
- Yunakovsky, S.E.; Kot, M.; Pozhar, N.; Nabokov, D.; Kudinov, M.; Guglya, A.; Kiktenko, E.O.; Kolycheva, E.; Borisov, A.; Fedorov, A.L. Towards security recommendations for public-key infrastructures for production environments in the post-quantum era. EPJ Quantum Technol. 2021, 8, 14. [Google Scholar] [CrossRef]
- Joseph, D.; Misoczki, R.; Manzano, M.; Tricot, J.; Pinuaga, F.D.; Lacombe, O.; Leichenauer, S.; Hidary, J.; Venables, P.; Hansen, R. Transitioning organizations to post-quantum cryptography. Nature 2022, 605, 237–243. [Google Scholar] [CrossRef]
- Mohammad, O.K.J.; Abbas, S.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Advanced encryption standard development based quantum key distribution. In Proceedings of the 9th International Conference for Internet Technology and Secured Transactions, London, UK, 8–10 December 2014. [Google Scholar]
- Xin, H. China Realizes Secure, Stable Quantum Communication Network Spanning 4600 km. 2021. Available online: http://www.china.org.cn/china/2021-01/07/content_77088150.htm (accessed on 7 January 2021).
- Feng, C. China Telecom launches quantum encrypted phone calls on smartphones in a new pilot programme. The Star, 7 January 2021. [Google Scholar]
- Xinhua. China Launches Quantum-Secured, ‘Unhackable’ Smartphone. China Daily, 17 May 2022. [Google Scholar]
- Mo, X.-F.; Zhu, B.; Han, Z.-F.; Gui, Y.-Z.; Guo, G.-C. Faraday—Michelson system for quantum cryptography. Opt. Lett. 2005, 30, 2632–2634. [Google Scholar] [CrossRef]
- Chen, W.; Han, Z.-F.; Zhang, T.; Wen, H.; Yin, Z.-Q.; Xu, F.-X.; Wu, Q.-L.; Liu, Y.; Zhang, Y.; Mo, X.-F.; et al. Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network. IEEE Photonics Technol. Lett. 2009, 21, 575–577. [Google Scholar] [CrossRef]
- Xu, F.; Chen, W.; Wang, S.; Yin, Z.; Zhang, Y.; Liu, Y.; Zhou, Z.; Zhao, Y.; Li, H.; Liu, D.; et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 2009, 54, 2991–2997. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhai, G.; Shi, Y. What Drives the Rise of Metro Developments in China? Evidence from Nantong. Sustainability 2018, 10, 2931. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-Y.; Jiang, X.; Tang, S.-B.; Zhou, L.; Yuan, X.; Zhou, H.; Wang, J.; Liu, Y.; Chen, L.-K.; Liu, W.-Y.; et al. Implementation of a 46-node quantum metropolitan area network. NPJ Quantum Inf. 2021, 7, 134. [Google Scholar] [CrossRef]
- Ribezzo, D.; Zahidy, M.; Vagniluca, I.; Biagi, N.; Francesconi, S.; Occhipinti, T.; Oxenløwe, L.K.; Lončarić, M.; Cvitić, I.; Stipčević, M.; et al. Deploying an Inter-European Quantum Network. Adv. Quantum Technol. 2023, 6, 2200061. [Google Scholar] [CrossRef]
- Wang, L.-J.; Zou, K.-H.; Sun, W.; Mao, Y.; Zhu, Y.-X.; Yin, H.-L.; Chen, Q.; Zhao, Y.; Zhang, F.; Chen, T.-Y.; et al. Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Phys. Rev. A 2017, 95, 012301. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.-G.; Abulizi, M.; Yong, H.-L.; Yin, J. Portable ground stations for space-to-ground quantum key distribution. arXiv 2022, arXiv:2205.13828. [Google Scholar]
- Liao, S.-K.; Yong, H.-L.; Liu, C.; Shentu, G.-L.; Li, D.-D.; Lin, J.; Dai, H.; Zhao, S.-Q.; Li, B.; Guan, J.-Y.; et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics 2017, 11, 509–513. [Google Scholar] [CrossRef]
- Satnews. China Launches New Satellite in Important Step Towards Global Quantum Communications Network. Satnews, 31 July 2022. [Google Scholar]
- van Deventer, O.; Spethmann, N.; Loeffler, M.; Amoretti, M.; van den Brink, R.; Bruno, N.; Comi, P.; Farrugia, N.; Gramegna, M.; Jenet, A.; et al. Towards European standards for quantum technologies. EPJ Quantum Technol. 2022, 9, 33. [Google Scholar] [CrossRef]
- CCSA. China Communications Standards Association. 2022. Available online: https://www.ccsa.org.cn/english/ (accessed on 20 February 2023).
- Huang, L.; Zhou, H.; Feng, K.; Xie, C. Quantum random number cloud platform. NPJ Quantum Inf. 2021, 7, 107. [Google Scholar] [CrossRef]
- Mehic, M.; Niemiec, M.; Rass, S.; Ma, J.; Peev, M.; Aguado, A.; Martin, V.; Schauer, S.; Poppe, A.; Pacher, C.; et al. Quantum Key Distribution: A Networking Perspective. ACM Comput. Surv. 2020, 53, 1–44. [Google Scholar] [CrossRef]
- Stanley, M.; Gui, Y.; Unnikrishnan, D.; Hall, S.; Fatadin, I. Recent Progress in Quantum Key Distribution Network Deployments and Standards. J. Phys. Conf. Ser. 2022, 2416, 012001. [Google Scholar] [CrossRef]
- Sun, S.; Huang, A. A Review of Security Evaluation of Practical Quantum Key Distribution System. Entropy 2022, 24, 260. [Google Scholar] [CrossRef]
- ITU-T, Y.3800; Overview on Networks Supporting Quantum Key Distribution. Geneva, Switzerland, 2019.
Protocol | Channel | Distance or Loss | Key Rate (bps) | Year | Reference |
---|---|---|---|---|---|
Modified BB84 | Lab fiber | 421 km | 6.5 | 2018 | [29] |
Twin-field | Lab fiber | 90.8 dB | 0.045 | 2019 | [31] |
Twin-field | Lab fiber | 502 km | 0.118 | 2020 | [35] |
Twin-field | Lab fiber | 509 km | 0.269 | 2020 | [36] |
Twin-field | Lab fiber | 605 km | 0.97 | 2021 | [37] |
Twin-field | Field Trial | 511 km | 3.45 | 2021 | [38] |
Twin-field | Lab fiber | 658 km | 0.092 | 2022 | [39] |
Twin-field | Lab fiber | 830 km | 0.014 | 2022 | [19] |
Experiment | Achievement | Year | Reference |
---|---|---|---|
Quantum Key Distribution | 1200 km satellite-to-ground QKD (1.1 kbps key rate) | 2017 | [61] |
1000 km satellite-to-ground entanglement-based QKD (3.5 bps key rate) | 2017 | [62] | |
7600 km apart ground stations satellite relay QKD and encryption demonstration (key volume 100 KB) | 2018 | [63] | |
1120 km apart ground stations entanglement-based QKD (0.12 kbps key rate) | 2020 | [64] | |
Increasing key rate 40 times in satellite-ground QKD (47.8 kbps key rate) | 2021 | [65] | |
Quantum Teleportation | 1200 km apart ground stations entanglement distribution (0.869 fidelity) | 2017 | [66] |
1400 km ground-to-satellite quantum teleportation (0.80 fidelity) | 2017 | [67] | |
1200 km apart ground stations quantum state transfer (0.82 fidelity) | 2022 | [68] | |
Quantum Physics | Experimental of gravitationally induced quantum decoherence model | 2019 | [69] |
Satellite-to-ground quantum-secure time transfer (9 kHz time data rate, and 30 ps transfer precision) | 2020 | [70] |
Solution | Entropy Source | Key Establishment | Digital Signature | Encryption |
---|---|---|---|---|
Current | CSPRNG * | ECDH (SM2 **) | RSA (SM2) | AES (SM4 **) |
PQC | CSPRNG | PQC KEM *** | PQC DS **** | AES (SM4) |
QRNG + PQC | QRNG | PQC KEM | PQC DS | AES (SM4) |
QKD-based QSC | CSPRNG or QRNG | QKD | RSA (SM2) or Pre-shared Key | AES (SM4) |
QRNG + QKD + PQC | QRNG | QKD | PQC DS | AES (SM4) |
ITS Encryption | QRNG | QKD | Pre-shared Key | OTP |
Type | Subject | Status |
---|---|---|
National | Quantum communication terms and definitions | Ongoing |
National | Quantum secure communication use cases and requirements | Ongoing |
Industrial | Quantum key distribution (QKD) system technical requirements Part 1: BB84 protocol-based QKD system | Released 2021 |
Industrial | Quantum key distribution (QKD) system test methods Part 1: BB84 protocol-based QKD system | Released 2021 |
Industrial | Quantum key distribution (QKD) system application interface | Ongoing |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 1: Light source | Released 2022 |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 2: Single photon detector | Released2022 |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 3: Quantum Random Number Generator (QRNG) | Released 2021 |
Industrial | Quantum secure communication network architecture | Released 2022 |
Industrial | Quantum key distribution and optical communication co-propagation technology requirements | Ongoing |
Industrial | Quantum key distribution (QKD) network interface requirements between key management and QKD | Ongoing |
Industrial | Quantum key distribution (QKD) equipment security requirements Part 1: QKD based on decoy state BB84 protocol | Ongoing |
Industrial | Technical specifications for quantum secure communication application equipment based on IPSec Protocol | Released 2022 |
Industrial | Quantum key distribution network management system technical requirements | Released 2022 |
Industrial | Quantum key distribution (QKD) system technical requirements Part 2: Gaussian modulated coherent state protocol-based QKD | Ongoing |
Industrial | Quantum key distribution (QKD) system test methods Part 2: Gaussian modulated coherent state protocol-based QKD | Ongoing |
Industrial | Technical requirements for trusted nodes of quantum secure communication networks | Ongoing |
Industrial | Quantum key distribution network security technology requirements | Ongoing |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 4: Decoy state modulation module | Ongoing |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 5: Quantum state modulation module | Ongoing |
Industrial | Components for BB84 protocol quantum key distribution (QKD) Part 6: Quantum state de-modulation module | Ongoing |
Industrial | Quantum random number generator technical specifications | Ongoing |
Industrial | Transport layer cryptography protocol-based quantum secure communication application equipment technical specifications | Ongoing |
Industrial | Technical specification for quantum secure communication application equipment for VoIP services | Ongoing |
Industrial | Quantum key distribution (QKD) network technical requirements for key management | Ongoing |
QKD Test Objects | QKD Test Items |
---|---|
System performance | Average secure key rate of QKD |
System channel-loss margin | |
QKD output key consistency | |
QKD output key randomness | |
QKD transmitter | Optical source time-domain characteristics |
Optical source frequency-domain characteristics | |
Random number generator characteristics | |
Decoy state modulation time-domain characteristics | |
Decoy state modulation probability distribution | |
Quantum state modulation time-domain characteristics | |
Quantum state modulation frequency-domain characteristics | |
Quantum state modulation demodulation accuracy | |
Average photon number of quantum state signal | |
Injection optical isolation | |
QKD receiver | Injected light leakage threshold |
SPD time-domain response characteristics | |
SPD dark count probability | |
SPD dead time | |
SPD detection efficiency | |
SPD post-pulse probability | |
Synchronization channel | Optical signal time-domain characteristics |
Optical signal frequency-domain characteristics | |
Optical signal receipt sensitivity | |
Distillation channel | Optical signal time-domain characteristics |
Optical signal frequency-domain characteristics | |
Other system features | System long-term stability |
System redundancy protection | |
System start-up time | |
System recovery time | |
System environmental reliability | |
Power supply tolerance | |
Network management | System management features |
Network management features |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Yao, F.; Wang, J.; Zhang, M.; Li, F.; Zhao, W.; Zhang, H. Application and Development of QKD-Based Quantum Secure Communication. Entropy 2023, 25, 627. https://doi.org/10.3390/e25040627
Lai J, Yao F, Wang J, Zhang M, Li F, Zhao W, Zhang H. Application and Development of QKD-Based Quantum Secure Communication. Entropy. 2023; 25(4):627. https://doi.org/10.3390/e25040627
Chicago/Turabian StyleLai, Junsen, Fei Yao, Jing Wang, Meng Zhang, Fang Li, Wenyu Zhao, and Haiyi Zhang. 2023. "Application and Development of QKD-Based Quantum Secure Communication" Entropy 25, no. 4: 627. https://doi.org/10.3390/e25040627
APA StyleLai, J., Yao, F., Wang, J., Zhang, M., Li, F., Zhao, W., & Zhang, H. (2023). Application and Development of QKD-Based Quantum Secure Communication. Entropy, 25(4), 627. https://doi.org/10.3390/e25040627