Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model
Abstract
:1. Introduction
- We analyzed the existing methods for the analysis of longitudinal and transverse musculoskeletal ultrasound images, summarizing their advantages and limitations. We also discussed the clinical value provided by transverse musculoskeletal ultrasound images, as well as the difficulties of manual analysis.
- We proposed a multi-task learning-based analysis method for transverse musculoskeletal ultrasound images. The method achieves both the segmentation of muscle cross-section areas and the classification of abnormal muscles by training a multi-task learning model. For diseased and healthy muscle ultrasound images with complex noise, the addition of an attention module and a multi-scale fusion module effectively increase the accuracy of the results. Compared with the single-task learning approach, the proposed method can fully exploit the potential connection between two tasks and share additional information to enhance the ability of image analysis.
- We proposed a novel multi-task learning model, MMA-Net, which outperforms some single-task models on skeletal muscle ultrasound images and is stable and robust. In the future, it has the potential to be applied to the analysis of other ultrasound images of other organs.
2. Literature Work
3. Methods
3.1. Network Architecture
3.2. The Atrous Spatial Pyramid Pooling (ASPP) Module
3.3. The Coordinate Attention (CA) Module
3.4. Combined Loss Function
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Evaluation Metrics
5. Results and Discussion
5.1. Ablation Study
5.2. Shared Layer Study
5.3. Comparison with Other Models
5.4. Comparison with Existing Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marzola, F.; van Alfen, N.; Salvi, M.; De Santi, B.; Doorduin, J.; Meiburger, K.M. Automatic segmentation of ultrasound images of gastrocnemius medialis with different echogenicity levels using convolutional neural networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2113–2116. [Google Scholar]
- Özçakar, L.; Tok, F.; De Muynck, M.; Vanderstraeten, G. Musculoskeletal ultrasonography in physical and rehabilitation medicine. J. Rehabil. Med. 2012, 44, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.Y.; Zheng, Y.P.; Xie, H.B.; Koo, T.K. Towards the application of one-dimensional sonomyography for powered upper-limb prosthetic control using machine learning models. Prosthetics Orthot. Int. 2013, 37, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puthucheary, Z.A.; McNelly, A.S.; Rawal, J.; Connolly, B.; Sidhu, P.S.; Rowlerson, A.; Moxham, J.; Harridge, S.D.; Hart, N.; Montgomery, H.E. Rectus femoris cross-sectional area and muscle layer thickness: Comparative markers of muscle wasting and weakness. Am. J. Respir. Crit. Care Med. 2017, 195, 136–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, I.M.; van Rooij, F.G.; Overeem, S.; Pillen, S.; Janssen, H.M.; Schelhaas, H.J.; Zwarts, M.J. Quantitative muscle ultrasonography in amyotrophic lateral sclerosis. Ultrasound Med. Biol. 2008, 34, 354–361. [Google Scholar] [CrossRef]
- Wang, B. Diagnosis of waist muscle injury after exercise Based on high-Frequency Ultrasound image. J. Healthc. Eng. 2021, 2021, 5528309. [Google Scholar] [CrossRef]
- van Alfen, N.; Mah, J.K. Neuromuscular ultrasound: A new tool in your toolbox. Can. J. Neurol. Sci. 2018, 45, 504–515. [Google Scholar] [CrossRef]
- Burlina, P.; Billings, S.; Joshi, N.; Albayda, J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS ONE 2017, 12, e0184059. [Google Scholar] [CrossRef] [Green Version]
- Zaidman, C.M.; Wu, J.S.; Kapur, K.; Pasternak, A.; Madabusi, L.; Yim, S.; Pacheck, A.; Szelag, H.; Harrington, T.; Darras, B.T.; et al. Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy. Ann. Neurol. 2017, 81, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, Y.P. Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT). Ultrasound Med. Biol. 2008, 34, 1474–1481. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, L.Q. Automatic tracking of muscle fascicles in ultrasound images using localized radon transform. IEEE Trans. Biomed. Eng. 2011, 58, 2094–2101. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Chan, P.; Zheng, Y.P. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics 2015, 57, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Caresio, C.; Salvi, M.; Molinari, F.; Meiburger, K.M.; Minetto, M.A. Fully automated muscle ultrasound analysis (MUSA): Robust and accurate muscle thickness measurement. Ultrasound Med. Biol. 2017, 43, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Salvi, M.; Caresio, C.; Meiburger, K.M.; De Santi, B.; Molinari, F.; Minetto, M.A. Transverse muscle ultrasound analysis (TRAMA): Robust and accurate segmentation of muscle cross-sectional area. Ultrasound Med. Biol. 2019, 45, 672–683. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Dutta, A.; Batabyal, T.; Basu, M.; Acton, S.T. An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 2020, 159, 113408. [Google Scholar] [CrossRef]
- Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. Doubleu-net: A deep convolutional neural network for medical image segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 558–564. [Google Scholar]
- Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv 2018, arXiv:1802.06955. [Google Scholar]
- Saito, H.; Aoki, T.; Aoyama, K.; Kato, Y.; Tsuboi, A.; Yamada, A.; Fujishiro, M.; Oka, S.; Ishihara, S.; Matsuda, T.; et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2020, 92, 144–151. [Google Scholar] [CrossRef]
- Cunningham, R.; Harding, P.; Loram, I. Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; pp. 63–73. [Google Scholar]
- Cunningham, R.; Sánchez, M.B.; May, G.; Loram, I. Estimating full regional skeletal muscle fibre orientation from B-mode ultrasound images using convolutional, residual, and deconvolutional neural networks. J. Imaging 2018, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Kompella, G.; Antico, M.; Sasazawa, F.; Jeevakala, S.; Ram, K.; Fontanarosa, D.; Pandey, A.K.; Sivaprakasam, M. Segmentation of femoral cartilage from knee ultrasound images using mask R-CNN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 966–969. [Google Scholar]
- Zheng, W.; Liu, S.; Chai, Q.W.; Pan, J.S.; Chu, S.C. Automatic Measurement of Pennation Angle from Ultrasound Images using Resnets. Ultrason. Imaging 2021, 43, 74–87. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, L.; Chai, Q.; Xu, J.; Liu, S. Fully Automatic Analysis of Muscle B-Mode Ultrasound Images Based on the Deep Residual Shrinkage U-Net. Electronics 2022, 11, 1093. [Google Scholar] [CrossRef]
- Marzola, F.; van Alfen, N.; Doorduin, J.; Meiburger, K.M. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment. Comput. Biol. Med. 2021, 135, 104623. [Google Scholar] [CrossRef] [PubMed]
- Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Zhao, R.; Li, S. Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Med. Image Anal. 2020, 60, 101593. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Z.; Dong, X.; Li, X.; Jiang, H.; Rong, R.; Wu, J. Lesion attributes segmentation for melanoma detection with multi-task u-net. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 485–488. [Google Scholar]
- Michard, H.; Luvison, B.; Pham, Q.C.; Morales-Artacho, A.J.; Guilhem, G. AW-Net: Automatic muscle structure analysis on B-mode ultrasound images for injury prevention. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, New York, NY, USA, 1–4 August 2021; pp. 1–9. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- SHONG, Y.; GAO, X.; ZHANG, D. The piecewise non-linear approximation of the sigmoid function and its implementation in FPGA. Appl. Electron. Tech. 2017, 43, 49–51. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W.A. Learning characteristics of stochastic-gradient-descent algorithms: A general study, analysis, and critique. Signal Process. 1984, 6, 113–133. [Google Scholar] [CrossRef]
- Zhang, Y.J. A review of recent evaluation methods for image segmentation. In Proceedings of the Sixth International Symposium on Signal Processing and Its Applications (Cat. No. 01EX467), Kuala Lumpur, Malaysia, 13–16 August 2001; Volume 1, pp. 148–151. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Metz, C.E. Basic principles of ROC analysis. In Seminars in Nuclear Medicine; Elsevier: Amsterdam, The Netherlands, 1978; Volume 8, pp. 283–298. [Google Scholar]
Name | Versions |
---|---|
CPU | Intel(R) Xeon(TM) Silver 4210R [email protected] |
GPU | NVIDIA GeForce RTX 3090 |
Operating System | Ubuntu 22.04 LTS |
Framework | PyTorch 1.11.0 |
Language | Python 3.8.8 |
Task | Metrics | Single-Task | Multi-Task Backbone |
---|---|---|---|
Segmentation | DSC(%) | 92.35 | 92.92 |
IoU(%) | 87.57 | 87.84 | |
PA(%) | 95.45 | 95.61 | |
Classification | Accuracy(%) | 89.01 | 91.21 |
Recall(%) | 79.98 | 90.24 | |
F-Score(%) | 84.61 | 87.91 | |
AUC(%) | 90.22 | 94.19 |
Models | DSC (%) | IoU (%) | PA (%) |
---|---|---|---|
Backbone | 92.92 | 87.84 | 95.61 |
Backbone+ASPP | 96.19 | 93.20 | 97.54 |
Backbone+ASPP+CA | 96.13 | 93.34 | 97.60 |
Backbone+ASPP+CA+Connection(MMA-Net) | 96.74 | 94.10 | 97.91 |
Model | Accuracy (%) | Recall (%) | F-Score (%) | AUC (%) |
---|---|---|---|---|
Backbone | 91.21 | 90.24 | 87.91 | 94.19 |
Backbone+ASPP | 93.40 | 91.04 | 90.83 | 95.88 |
Backbone+ASPP+CA | 95.60 | 91.04 | 93.77 | 96.57 |
Backbone+ASPP+CA+Connection (MMA-Net) | 95.60 | 94.96 | 93.95 | 97.62 |
Metrics | Mean (%) | SD (%) |
---|---|---|
DSC | 96.57 | 1.17 |
IoU | 94.84 | 2.03 |
Accuracy | 96.29 | 1.75 |
Recall | 95.21 | 1.97 |
Models | Segmentation Results | Classification Results | ||||
---|---|---|---|---|---|---|
DSC (%) | IoU (%) | PA (%) | Acc (%) | F-Score (%) | AUC (%) | |
U-Net | 92.35 | 92.43 | 95.45 | - | - | - |
U-Net++ | 92.43 | 87.06 | 94.79 | - | - | - |
LinkNet | 94.73 | 91.47 | 96.72 | - | - | - |
DeeplabV3+ | 94.67 | 90.92 | 96.46 | - | - | - |
VGG16 | - | - | - | 89.01 | 81.91 | 88.16 |
Resnet50 | - | - | - | 87.91 | 84.19 | 92.38 |
GoogleNet | - | - | - | 92.30 | 87.91 | 93.71 |
MMA-Net | 96.74 | 94.10 | 97.91 | 95.60 | 93.95 | 97.62 |
Model | Mean Difference ± Standard Error | 95% CI | p-Value |
---|---|---|---|
U-Net | 3.83 ± 0.49 | [2.62,5.03] | p = 0.0002 |
U-Net++ | 4.01 ± 0.77 | [2.78,5.83] | p < 0.0001 |
LinkNet | 1.85 ± 0.43 | [0.79,2.92] | p = 0.0053 |
DeeplabV3+ | 1.33 ± 0.32 | [0.52,2.14] | p = 0.0068 |
Model | Mean Difference ± Standard Error | 95% CI | p-Value |
---|---|---|---|
VGG16 | 5.06 ± 1.85 | [0.53,9.59] | p = 0.0341 |
Resnet50 | 8.37 ± 1.12 | [5.64,11.11] | p = 0.0003 |
GoogleNet | 2.90 ± 0.97 | [0.52,5.27] | p = 0.0243 |
Analysis Content | Metrics | Our | Marzola |
---|---|---|---|
Segmentation of CSA | DSC | 0.96 | 0.90 |
IoU | 0.94 | 0.82 | |
Classification of abnormal muscles | Precision | 0.94 | 0.88 |
Recall | 0.95 | 0.92 | |
F-score | 0.94 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Liu, S.; Zheng, W. Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model. Entropy 2023, 25, 662. https://doi.org/10.3390/e25040662
Zhou L, Liu S, Zheng W. Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model. Entropy. 2023; 25(4):662. https://doi.org/10.3390/e25040662
Chicago/Turabian StyleZhou, Linxueying, Shangkun Liu, and Weimin Zheng. 2023. "Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model" Entropy 25, no. 4: 662. https://doi.org/10.3390/e25040662
APA StyleZhou, L., Liu, S., & Zheng, W. (2023). Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model. Entropy, 25(4), 662. https://doi.org/10.3390/e25040662