Extended Multicriteria Group Decision Making with a Novel Aggregation Operator for Emergency Material Supplier Selection
Abstract
:1. Introduction
2. Literature Review
2.1. Decision Making in Emergency Material Suppliers Selection
2.2. MCGDM Method
3. Theoretical Background
3.1. Intuitionistic Fuzzy Set
3.2. Entropy
- if and only if , where represents the set of all fuzzy sets on ;
- if and only if for all ;
- If the fuzzy degree is lower than , then ;
- for all , where represents the set of all the intuitionistic fuzzy sets on .
3.3. Improved IFHPWA Aggregation Operator
- .
- .
- A normalized individual decision matrix is weighted.
- The priority level of decision makers is considered.
- The comprehensive evaluation decision matrix is obtained.
4. Evaluation Criteria of Emergency Medical Suppliers
5. Proposed Method
- An individual decision matrix is constructed and aggregated into a group decision matrix to determine the weight of the DMs.
- (1)
- An individual decision matrix is built.
- (2)
- The weight of the DMs is determined using the entropy method:
- 2.
- An intuitionistic fuzzy decision matrix is established to determine the weight of the criteria.
- (1)
- An individual intuitionistic fuzzy decision matrix is established:
- (2)
- The consistency is checked.
- (3)
- The group intuitionistic fuzzy decision matrix is built:
- (4)
- The weight of the criteria is then determined.
- 3.
- Using IFHPWA integrates the comprehensive evaluation for alternatives.
- (1)
- The individual decision matrix is weighted.
- (2)
- The decision makers’ priorities are considered.
- (3)
- A comprehensive evaluation decision matrix is constructed:
- 4.
- The alternatives are ranked using the TOPSIS method.
6. Illustrative Example
6.1. Case Description
6.2. Case Calculation
- 1.
- An individual decision matrix is constructed and aggregated into a group decision matrix to determine the weight of the DMs.
- (1)
- An individual decision matrix was built based on individual evaluation results, as shown in Table 6.
- (2)
- The weight of the DMs is determined using the entropy method.
- 2.
- An intuitionistic fuzzy decision matrix is established to determine the weight of the criteria.
- 3.
- Using IFHPWA, the comprehensive evaluation of the alternatives is integrated.
- 4.
- The alternatives are ranked using the TOPSIS method.
6.3. Comparison
7. Discussion
7.1. Theoretical Implications
7.2. Practical Implications
7.3. Limitation and Future Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Auerbach, J.D.; Forsyth, A.D.; Davey, C.; Hargreaves, J.R. Living with COVID-19 and preparing for future pandemics: Revisiting lessons from the HIV pandemic. Lancet HIV 2023, 10, e62–e68. [Google Scholar] [CrossRef] [PubMed]
- Tene, L.; Bergroth, T.; Eisenberg, A.; Ben David, S.S.; Chodick, G. Risk factors, health outcomes, healthcare services utilization, and direct medical costs of patients with long COVID. Int. J. Infect. Dis. 2023, 128, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Xiao, M.; Guan, X.; Lei, Y.; Diao, T.; Long, P.; Zeng, R.; Lai, X.; Cai, H.; et al. Long-term outcomes of COVID-19 convalescents: An 18.5-month longitudinal study in Wuhan. Int. J. Infect. Dis. 2023, 127, 85–92. [Google Scholar] [CrossRef]
- Kumar, D.; Mittal, M. India’s COVID-19 emergency: Overarching conclusions belie facts. Lancet 2021, 397, 2465. [Google Scholar] [CrossRef] [PubMed]
- Spina, S.; Marrazzo, F.; Migliari, M.; Stucchi, R.; Sforza, A.; Fumagalli, R. The response of Milan’s Emergency Medical System to the COVID-19 outbreak in Italy. Lancet 2020, 395, e49–e50. [Google Scholar] [CrossRef] [PubMed]
- Njomane, L.; Telukdarie, A. Impact of COVID-19 food supply chain: Comparing the use of IoT in three South African supermarkets. Technol. Soc. 2022, 71, 102051. [Google Scholar] [CrossRef]
- Cui, Z.; Fu, X.; Wang, J.; Qiang, Y.; Jiang, Y.; Long, Z. How does COVID-19 pandemic impact cities’ logistics performance? An evidence from China’s highway freight transport. Transp. Policy 2022, 120, 11–22. [Google Scholar] [CrossRef]
- El Korchi, A. Survivability, resilience and sustainability of supply chains: The COVID-19 pandemic. J. Clean. Prod. 2022, 377, 134363. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Bhatnagar, S. Impact of COVID-19 on ports, multimodal logistics and transport sector in India: Responses and policy imperatives. Transp. Policy 2023, 130, 15–25. [Google Scholar] [CrossRef]
- Fang, D.; Guo, Y. Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China. Res. Transp. Econ. 2022, 93, 101185. [Google Scholar] [CrossRef]
- He, L.-Y.; Li, H.; Bi, J.-W.; Yang, J.-J.; Zhou, Q. The impact of public health emergencies on hotel demand—Estimation from a new foresight perspective on the COVID-19. Ann. Tour. Res. 2022, 94, 103402. [Google Scholar] [CrossRef] [PubMed]
- Hamiduzzaman, M.; Siddiquee, N.; McLaren, H.; Tareque, I. The COVID-19 risk perceptions, health precautions, and emergency preparedness in older CALD adults in South Australia: A cross-sectional study. Infect. Dis. Health 2022, 27, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Tiesman, H.M.; Hendricks, S.A.; Wiegand, D.M.; Lopes-Cardozo, B.; Rao, C.Y.; Horter, L.; Rose, C.E.; Byrkit, R. Workplace Violence and the Mental Health of Public Health Workers During COVID-19. Am. J. Prev. Med. 2022, 64, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Ma, X. An IT2FS-PT3 based emergency response plan evaluation with MULTIMOORA method in group decision making. Appl. Soft Comput. 2022, 122, 108812. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L.; Guan, X.; Zheng, J. Impact of decision sequence on reliability enhancement with supply disruption risks. Transp. Res. Part E Logist. Transp. Rev. 2016, 90, 25–38. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Liu, P. Dynamic consensus of large group emergency decision-making under dual-trust relationship-based social network. Inf. Sci. 2022, 615, 58–89. [Google Scholar] [CrossRef]
- Liu, S.; He, X.; Chan, F.T.; Wang, Z. An extended multi-criteria group decision-making method with psychological factors and bidirectional influence relation for emergency medical supplier selection. Expert Syst. Appl. 2022, 202, 117414. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, G.; Chen, X. SF-GRA method based on cumulative prospect theory for multiple attribute group decision making and its application to emergency supplies supplier selection. Eng. Appl. Artif. Intell. 2022, 110, 104679. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Liu, Y. Quantitative evaluation of provincial government plans for public health emergencies in China. Int. J. Disaster Risk Reduct. 2022, 81, 103292. [Google Scholar] [CrossRef]
- Aghajani, M.; Torabi, S.A.; Heydari, J. A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains. Socio-Econ. Plan. Sci. 2020, 71, 100780. [Google Scholar] [CrossRef]
- Fassier, T.; Valour, E.; Colin, C.; Danet, F. Who Am I to Decide Whether This Person Is to Die Today? Physicians’ Life-or-Death Decisions for Elderly Critically Ill Patients at the Emergency Department–ICU Interface: A Qualitative Study. Ann. Emerg. Med. 2015, 68, 28–39.e3. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, X.; Yin, X.; Pan, B. A risky large group emergency decision-making method based on topic sentiment analysis. Expert Syst. Appl. 2022, 195, 116527. [Google Scholar] [CrossRef]
- Bednar, H.; McMillan, S.; Seidl, M.; Powell, R.; Sidibe, T. An intra-action review conducted by the CDC Foundation during COVID-19 to evaluate emergency response procedures. Public Health 2023, 218, 21–24. [Google Scholar] [CrossRef]
- Araz, O.M.; Jehn, M. Improving public health emergency preparedness through enhanced decision-making environments: A simulation and survey based evaluation. Technol. Forecast. Soc. Chang. 2013, 80, 1775–1781. [Google Scholar] [CrossRef]
- Junior, O.A.G.; Nascimento, D.C.; Russo, C.M.; Henriques, M.J.; Tomazella, C.P.; Santos, M.O.; Neves, D.; Assad, D.; Guerra, R.; Bertazo, E.K.; et al. Safety-Stock: Predicting the demand for supplies in Brazilian hospitals during the COVID-19 pandemic. Knowl. -Based Syst. 2022, 247, 108753. [Google Scholar] [CrossRef] [PubMed]
- Fenxia, Z. The community resilience measurement throughout the COVID-19 pandemic and beyond -an empirical study based on data from Shanghai, Wuhan and Chengdu. Int. J. Disaster Risk Reduct. 2022, 67, 102664. [Google Scholar] [CrossRef]
- An, M.; Liu, M.; An, H.; Ramsey, T.S. Systematic evaluation of emergency management capacity for rural public health emergencies. Int. J. Disaster Risk Reduct. 2023, 85, 103493. [Google Scholar] [CrossRef]
- Han, J.; Wu, Q.; Zhang, L.; Lei, C. How can the urban emergency capability gap be measured? Construction of a standardized indicator system in China. Int. J. Disaster Risk Reduct. 2022, 80, 103236. [Google Scholar] [CrossRef]
- Xie, K.; Zhu, S.; Gui, P.; Chen, Y. Coordinating an emergency medical material supply chain with CVaR under the pandemic considering corporate social responsibility. Comput. Ind. Eng. 2023, 176, 108989. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.P. Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. Int. J. Prod. Econ. 2021, 231, 107830. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Chen, Y. A robust multi-supplier multi-period inventory model with uncertain market demand and carbon emission constraint. Comput. Ind. Eng. 2022, 165, 107937. [Google Scholar] [CrossRef]
- Okeagu, C.N.; Reed, D.S.; Sun, L.; Colontonio, M.M.; Rezayev, A.; Ghaffar, Y.A.; Kaye, R.J.; Liu, H.; Cornett, E.M.; Fox, C.J.; et al. Principles of supply chain management in the time of crisis. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 369–376. [Google Scholar] [CrossRef]
- Soares, L.d.M.B.; Moreira, M.L.; Basilio, M.P.; Gomes, C.F.S.; dos Santos, M.; Costa, I.P. Strategic Analysis for the Installation of Field Hospitals for COVID-19 Control: An Approach Based on P-Median Model. In Proceedings of the Modern Management based on Big Data II and Machine Learning and Intelligent Systems III, Seoul, Korea, 15–18 August 2021. [Google Scholar]
- Ahmadi, H.; Samany, N.N.; Ghanbari, A.; Argany, M. Designing a bi-level emergency medical centers’ chain to increase the resilience of EMS’s supply-chain using ACO-QAP: A case study of Tabriz. Int. J. Disaster Risk Reduct. 2022, 82, 103259. [Google Scholar] [CrossRef]
- Choi, T.-M. Internet based elastic logistics platforms for fashion quick response systems in the digital era. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102096. [Google Scholar] [CrossRef]
- Esmaeili-Najafabadi, E.; Nezhad, M.S.F.; Pourmohammadi, H.; Honarvar, M.; Vahdatzad, M.A. A joint supplier selection and order allocation model with disruption risks in centralized supply chain. Comput. Ind. Eng. 2019, 127, 734–748. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Liu, B.; Migdalas, A. Emergency decision-making model of suppliers with updating information in cases of sudden accidents. Comput. Ind. Eng. 2021, 162, 107740. [Google Scholar] [CrossRef]
- Zhou, C.; Xiu, H.; Wang, Y.; Yu, X. Characterizing the dissemination of misinformation on social media in health emergencies: An empirical study based on COVID-19. Inf. Process. Manag. 2021, 58, 102554. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, W. Subjective Distress about COVID-19 and Its Social Correlates: Empirical Evidence from Hubei Province of China. J. Affect. Disord. 2021, 289, 46–54. [Google Scholar] [CrossRef]
- Budak, A.; Kaya, I.; Karaşan, A.; Erdoğan, M. Real-time location systems selection by using a fuzzy MCDM approach: An application in humanitarian relief logistics. Appl. Soft Comput. 2020, 92, 106322. [Google Scholar] [CrossRef]
- Nassereddine, M.; Azar, A.; Rajabzadeh, A.; Afsar, A. Decision making application in collaborative emergency response: A new PROMETHEE preference function. Int. J. Disaster Risk Reduct. 2019, 38, 101221. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Y.-M.; Zhang, K.; Gao, J.-Q.; Yang, L.-H. A heterogeneous multi-attribute case retrieval method for emergency decision making based on bidirectional projection and TODIM. Expert Syst. Appl. 2022, 203, 117382. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.-M.; Goh, M. An extended TODIM approach for group emergency decision making based on bidirectional projection with hesitant triangular fuzzy sets. Comput. Ind. Eng. 2021, 151, 106959. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, Z. A multi-attribute double auction and bargaining model for emergency material procurement. Int. J. Prod. Econ. 2022, 254, 108635. [Google Scholar] [CrossRef]
- Ding, X.-F.; Liu, H.-C.; Shi, H. A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables. Comput. Ind. Eng. 2019, 131, 57–65. [Google Scholar] [CrossRef]
- Wan, S.-P.; Cheng, W.-B.H.; Dong, J.-Y. Interactive multi-criteria group decision-making with probabilistic linguistic information for emergency assistance of COVID-19. Appl. Soft Comput. 2021, 107, 107383. [Google Scholar] [CrossRef]
- Dong, J.; Ju, Y.; Dong, P.; Giannakis, M.; Wang, A.; Liang, Y.; Wang, H. Evaluate and select state-owned enterprises with sustainable high-quality development capacity by integrating FAHP-LDA and bidirectional projection methods. J. Clean. Prod. 2021, 329, 129771. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Z.; Cai, Q.; Wei, G.; Mo, Z. An extended Exp-TODIM method for multiple attribute decision making based on the Z-Wasserstein distance. Expert Syst. Appl. 2023, 214, 119114. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Y.; Zhang, B.; Pedrycz, W. Minimum information-loss transformations to support heterogeneous group decision making in a distributed linguistic context. Inf. Fusion 2023, 89, 437–451. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Guo, J.; Yin, J.; Zhang, L.; Lin, Z.; Li, X. Extended TODIM method for CCUS storage site selection under probabilistic hesitant fuzzy environment. Appl. Soft Comput. 2020, 93, 106381. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Dombi, J.; Jónás, T. Ranking trapezoidal fuzzy numbers using a parametric relation pair. Fuzzy Sets Syst. 2020, 399, 20–43. [Google Scholar] [CrossRef]
- Jin, C.; Mi, J.; Li, F.; Liang, M. A novel probabilistic hesitant fuzzy rough set based multi-criteria decision-making method. Inf. Sci. 2022, 608, 489–516. [Google Scholar] [CrossRef]
- Rani, D.; Ebrahimnejad, A.; Gupta, G. Generalized techniques for solving intuitionistic fuzzy multi-objective non-linear optimization problems. Expert Syst. Appl. 2022, 202, 117264. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Wang, W.; Zhu, Y.; Cai, Z.; Yang, S. A heterogeneous GRA-CBR-based multi-attribute emergency decision-making model considering weight optimization with dual information correlation. Expert Syst. Appl. 2021, 182, 115208. [Google Scholar] [CrossRef]
- Wang, T.-C.; Lee, H.-D. Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Syst. Appl. 2009, 36, 8980–8985. [Google Scholar] [CrossRef]
- Du, Y.-W.; Shen, X.-L. Group hierarchical DEMATEL method for reaching consensus. Comput. Ind. Eng. 2023, 175, 108842. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Liang, F.; Brunelli, M.; Rezaei, J. Best-worst Trade off method. Inf. Sci. 2022, 610, 957–976. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, B.; Xu, C.; Li, L. Site selection decision framework using fuzzy ANP-VIKOR for large commercial rooftop PV system based on sustainability perspective. Sustain. Cities Soc. 2018, 40, 454–470. [Google Scholar] [CrossRef]
- Farrokhizadeh, E.; Seyfi-Shishavan, S.A.; Gündoğdu, F.K.; Donyatalab, Y.; Kahraman, C.; Seifi, S.H. A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods. Eng. Appl. Artif. Intell. 2021, 101, 104212. [Google Scholar] [CrossRef]
- Meni, Z.B.; Ozkan, E.M. Vaccine selection for COVID-19 by AHP and novel VIKOR hybrid approach with interval type-2 fuzzy sets. Eng. Appl. Artif. Intell. 2023, 119, 105812. [Google Scholar] [CrossRef] [PubMed]
- Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 1996, 78, 305–316. [Google Scholar] [CrossRef]
- Biscaia, R.V.B.; Junior, A.B.; Colmenero, J.C. Selection of projects for automotive assembly structures using a hybrid method composed of the group-input compatible, best-worst method for criteria weighting and TrBF-TOPSIS. Expert Syst. Appl. 2021, 184, 115557. [Google Scholar] [CrossRef]
- Wu, Y.; Yong, X.; Tao, Y.; Zhou, J.; He, J.; Chen, W.; Yang, Y. Investment monitoring key points identification model of big science research infrastructures -- Fuzzy BWM-entropy-PROMETHEE Ⅱ method. Socio-Econ. Plan. Sci. 2022, 86, 101461. [Google Scholar] [CrossRef]
- Xu, Z. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl. -Based Syst. 2011, 24, 749–760. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic Fuzzy Aggregation Operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Ren, W.; Du, Y.; Sun, R.; Du, Y. Development of complex cubic q-rung orthopair fuzzy aggregation operators and their application in group decision-making. J. Math. Anal. Appl. 2023, 519, 126848. [Google Scholar] [CrossRef]
- Borah, G.; Dutta, P. Aggregation operators of quadripartitioned single-valued neutrosophic Z-numbers with applications to diverse COVID-19 scenarios. Eng. Appl. Artif. Intell. 2023, 119, 105748. [Google Scholar] [CrossRef]
- Garg, H. Nancy Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 2019, 138, 278–290. [Google Scholar] [CrossRef]
- Marrara, S.; Pasi, G.; Viviani, M. Aggregation operators in Information Retrieval. Fuzzy Sets Syst. 2017, 324, 3–19. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M.; Palacios-Marqués, D. Linguistic group decision making with induced aggregation operators and probabilistic information. Appl. Soft Comput. 2014, 24, 669–678. [Google Scholar] [CrossRef]
- Gumus, S.; Kucukvar, M.; Tatari, O. Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustain. Prod. Consum. 2016, 8, 78–92. [Google Scholar] [CrossRef]
- Jin, B. Research on performance evaluation of green supply chain of automobile enterprises under the background of carbon peak and carbon neutralization. Energy Rep. 2021, 7, 594–604. [Google Scholar] [CrossRef]
- Shaik, M.N.; Abdul-Kader, W. A hybrid multiple criteria decision making approach for measuring comprehensive performance of reverse logistics enterprises. Comput. Ind. Eng. 2018, 123, 9–25. [Google Scholar] [CrossRef]
- Walczak, W.; Kuchta, D. Risks characteristic to Agile project management methodologies and responses to them. Oper. Res. Decis. 2013, 23, 75–95. [Google Scholar]
- Zhang, J.F.; Wu, Z.J.; Feng, P.F.; Yu, D.W. Evaluation systems and methods of enterprise informatization and its application. Expert Syst. Appl. 2011, 38, 8938–8948. [Google Scholar] [CrossRef]
- Christopher, M.; Peck, H. Building the resilient supply chain. Int. J. Logist. 2004, 15, 1–14. [Google Scholar] [CrossRef]
- Cardoso, S.R.; Barbosa-Póvoa, A.P.; Relvas, S.; Novais, A.Q. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega 2015, 56, 53–73. [Google Scholar] [CrossRef]
- Ackoff, R.L. From data to wisdom. J. Appl. Syst. Anal. 1989, 16, 3–9. [Google Scholar]
- Gupta, G.; Bose, I. Digital transformation in entrepreneurial firms through information exchange with operating environment. Inf. Manag. 2022, 59, 103243. [Google Scholar] [CrossRef]
- He, X.; Hu, W.; Li, W.; Hu, R. Digital transformation, technological innovation, and operational resilience of port firms in case of supply chain disruption. Mar. Pollut. Bull. 2023, 190, 114811. [Google Scholar] [CrossRef]
- Niknejad, A.; Petrovic, D. Optimisation of integrated reverse logistics networks with different product recovery routes. Eur. J. Oper. Res. 2014, 238, 143–154. [Google Scholar] [CrossRef]
- Ullah, B. The impact of quality certification on SME innovation and the role of institutions. Res. Int. Bus. Financ. 2022, 62, 101748. [Google Scholar] [CrossRef]
- Abbas, J. Impact of total quality management on corporate sustainability through the mediating effect of knowledge management. J. Clean. Prod. 2020, 244, 118806. [Google Scholar] [CrossRef]
- Gatenholm, G.; Halldórsson, A. Responding to discontinuities in product-based service supply chains in the COVID-19 pandemic: Towards transilience. Eur. Manag. J. 2022, 236, 108074. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Mei, Q.; Yang, T.; Li, L.; Wang, Y.; Tong, F.; Geng, S.; Pan, A. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J. Infect. 2020, 81, 147–178. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y. An integrative framework of supply chain flexibility. Int. J. Product. Perform. Manag. 2020, 69, 1321–1342. [Google Scholar] [CrossRef]
- Mia Delic, D.R.E. The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry. Int. J. Prod. Econ. 2020, 228, 107689. [Google Scholar] [CrossRef]
- Jiayi Zhu, X.T. Value of High-Quality Distribution in Front Warehouse Mode Retailing. Procedia Comput. Sci. 2022, 199, 110–117. [Google Scholar]
- Yeung, T.Y.-C.; Zhu, D. Intercity ridesharing to the rescue: Capacity flexibility and price stability of BlaBlaCar during the 2018 French railway strike. Transp. Res. Part A Policy Pract. 2022, 164, 270–290. [Google Scholar] [CrossRef]
- Meng, Q.; Kao, Z.; Guo, Y.; Bao, C. An emergency supplies procurement strategy based on a bidirectional option contract. Socio-Econ. Plan. Sci. 2023, 101515. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D.; Dolgui, A. Review of quantitative methods for supply chain resilience analysis. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 285–307. [Google Scholar] [CrossRef]
- Bai, C.; Liu, H.; Zhang, R.; Feng, C. Blessing or curse? Market-driven environmental regulation and enterprises’ total factor productivity: Evidence from China’s carbon market pilots. Energy Econ. 2023, 117, 106432. [Google Scholar] [CrossRef]
- Jin, X.; Xu, L.; Xin, Y.; Adhikari, A. Political governance in China’s state-owned enterprises. China J. Account. Res. 2022, 15, 100236. [Google Scholar] [CrossRef]
- Lukoianove, T.; Agarwal, J.; Osiyevskyy, O. Modeling a country’s political environment using dynamic factor analysis (DFA): A new methodology for IB research. J. World Bus. 2022, 57, 101313. [Google Scholar] [CrossRef]
- Rana, R.; Kant, R.; Huirem, R.S.; Bohra, D.; Ganguly, N.K. Omicron variant: Current insights and future directions. Microbiol. Res. 2022, 265, 127204. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Y.; Zhang, X.; Li, Y.; Liu, L. Blockchain Service Provider Selection Based on an Integrated BWM-Entropy-TOPSIS Method Under an Intuitionistic Fuzzy Environment. IEEE Access 2020, 8, 104148–104164. [Google Scholar] [CrossRef]
- Wei, D.; Meng, D.; Rong, Y.; Liu, Y.; Garg, H.; Pamucar, D. Fermatean Fuzzy Schweizer–Sklar Operators and BWM-Entropy-Based Combined Compromise Solution Approach: An Application to Green Supplier Selection. Entropy 2022, 24, 776. [Google Scholar] [CrossRef]
- Moslem, S.; Farooq, D.; Jamal, A.; Almarhabi, Y.; Almoshaogeh, M.; Butt, F.M.; Tufail, R.F. An Integrated Fuzzy Analytic Hierarchy Process (AHP) Model for Studying Significant Factors Associated with Frequent Lane Changing. Entropy 2022, 24, 367. [Google Scholar] [CrossRef] [PubMed]
- Seker, S. IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment. Technol. Soc. 2022, 71, 102100. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Haroon, M. Research on significant factors affecting adoption of blockchain technology for enterprise distributed applications based on integrated MCDM FCEM-MULTIMOORA-FG method. Eng. Appl. Artif. Intell. 2023, 118, 105699. [Google Scholar] [CrossRef]
References | Research Field | Method |
---|---|---|
Zhang et al. [18] | Public Emergency | MCGDM |
Qin et al. [14] | Public Health Emergency | MCGDM |
Liu et al. [16] | Rescue in Earthquake-Stricken Areas | Dynamical Consensus Method |
Yang et al. [37] | Sudden Accidents | Bayesian Inference |
Zheng et al. [42] | Typhoon Disaster Assessment | MCGDM |
Ding et al. [43] | Public Health Emergency | MCGDM |
Nassereddine et al. [41] | Emergency Response | MCGDM |
Primary Criteria | Secondary Criteria | Primary Criteria | Secondary Criteria |
---|---|---|---|
Enterprise credit | financial status | Supply capacity | order completion rate |
development prospects | packing sound rate | ||
cooperation attitude | delivery punctuality | ||
industry status and reputation | Flexibility | batch flexibility | |
employee quality | category flexibility | ||
equipment level | time flexibility | ||
risk management ability | Price | price stability | |
informatization degree | price advantage | ||
Rapid response ability | information exchange capacity | Enterprise environment | economic environment |
emergency distribution capacity | natural environment | ||
order processing ability | political environment | ||
Quality | return processing capacity | ||
qualified rate | |||
quality certification | |||
total quality management ability |
Notations | Definitions |
---|---|
Set of alternative suppliers | |
Set of criteria | |
Set of DMs | |
Individual decision matrix | |
Individual decision matrix of criteria weighting | |
The weighted individual decision matrix | |
Group intuitionistic fuzzy decision matrix | |
Entropy value of | |
Degree of divergence | |
Weight of | |
Set of the weights of decision makers | |
Consistency test value of subjective weight | |
Threshold for the consistency test, generally taken as | |
Combined weight of the fuzzy-AHP method | |
Weight of primary criteria in the fuzzy-AHP method | |
Weight of secondary criteria in the fuzzy-AHP method | |
Comprehensive evaluation matrix | |
Intuitionistic fuzzy positive ideal solution | |
Intuitionistic fuzzy negative ideal solution | |
Distance between and the positive ideal solution | |
Distance between and the negative ideal solution | |
Relative closeness coefficient of |
Definition | Specification | Number |
---|---|---|
Infrared Thermometer | General | 500 |
Goggles | Medical | 8000 |
Mask | Medical | 30,000 |
Full Protective Clothing | Medical | 25,000 |
Disinfectant | 25 kg | 500 |
75% Medical Alcohol | 1500 mL | 5000 |
Disposable Gloves | Medical | 30,000 |
Hand Gel | 500 mL | 50,000 |
Disinfection Spray | Back-Carrying Type | 500 |
Language Variables | Corresponding Intuitionistic Fuzzy Number |
---|---|
Excellent (E) | (1.00, 0.00, 0.00) |
Very, Very Good (VVG) | (0.90, 0.10, 0.00) |
Very Good (VG) | (0.80, 0.10, 0.10) |
Good (G) | (0.70, 0.20, 0.10) |
Medium Good (MG) | (0.60, 0.30, 0.10) |
Medium (M) | (0.50, 0.40, 0.10) |
Medium Bad (MB) | (0.40, 0.55, 0.05) |
Bad (B) | (0.25, 0.60, 0.15) |
Very Bad (VB) | (0.10, 0.75, 0.15) |
Very, Very Bad (VVB) | (0.10, 0.90, 0.00) |
Criteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | Z1 | Z2 | Z3 | Z1 | Z2 | Z3 | |
C11 | VG | VG | B | VG | VG | VB | VG | VG | VB |
C12 | VG | VG | M | VVG | VVG | MB | VVG | VVG | VB |
C13 | G | VG | VVG | MG | VG | VVG | G | G | VVG |
C14 | VG | VVG | VG | VG | VVG | VG | VG | VVG | VG |
C15 | G | M | G | G | MG | MG | G | MG | MG |
C16 | M | VG | VG | M | VG | VG | MG | VG | VVG |
C17 | VG | VG | G | VG | VG | VG | VG | VG | VVG |
C18 | VVG | G | VG | VG | G | VG | VG | MG | G |
C21 | VG | VVG | VG | VG | VVG | VG | VVG | VVG | G |
C22 | VVG | G | VG | VG | MG | VG | VG | MG | VG |
C23 | G | M | VG | G | M | VG | G | M | VG |
C31 | VVB | VG | VVG | VB | VG | VG | VB | VG | VVG |
C32 | B | VG | G | B | VVG | G | MB | VVG | G |
C33 | VVB | VG | MG | VB | VG | MG | VB | VG | MG |
C34 | M | VVG | MG | M | VVG | MG | M | VVG | MG |
C41 | E | VVG | VG | E | VVG | VG | EG | VVG | VG |
C42 | B | VG | G | B | VG | G | MB | VG | G |
C43 | MB | G | VG | MB | G | VG | MB | M | VG |
C51 | VG | B | G | VG | MB | G | VG | VB | G |
C52 | VVG | VB | M | VG | VB | VG | VG | VB | VG |
C53 | VG | VB | VG | VVG | VVB | G | VVG | VVB | VVG |
C61 | VVB | E | M | VVB | E | M | VVB | E | VG |
C62 | VVB | VVG | MB | VB | VVG | MB | VB | VVG | B |
C71 | VB | VG | G | VB | VG | G | VB | VG | G |
C72 | VG | G | VVG | VG | G | VVG | VVG | VG | VVG |
C73 | MG | E | E | M | VVG | VVG | MG | E | VVG |
Combined Weights | Combined Weights | ||||||
---|---|---|---|---|---|---|---|
0.043 | 0.940 | 0.017 | 0.033 | 0.952 | 0.015 | ||
0.029 | 0.957 | 0.014 | 0.033 | 0.952 | 0.015 | ||
0.035 | 0.950 | 0.015 | 0.030 | 0.956 | 0.015 | ||
0.024 | 0.961 | 0.015 | 0.029 | 0.957 | 0.015 | ||
0.034 | 0.951 | 0.015 | 0.030 | 0.955 | 0.015 | ||
0.030 | 0.964 | 0.006 | 0.028 | 0.957 | 0.014 | ||
0.039 | 0.945 | 0.016 | 0.027 | 0.958 | 0.014 | ||
0.031 | 0.954 | 0.015 | 0.030 | 0.956 | 0.014 | ||
0.029 | 0.957 | 0.014 | 0.030 | 0.955 | 0.015 | ||
0.033 | 0.951 | 0.015 | 0.023 | 0.963 | 0.014 | ||
0.029 | 0.957 | 0.015 | 0.038 | 0.946 | 0.016 | ||
0.030 | 0.955 | 0.015 | 0.032 | 0.953 | 0.015 | ||
0.035 | 0.949 | 0.015 | 0.038 | 0.946 | 0.016 |
C11 | C12 | C13 | C14 | |||||||||
Z1 | 0.230 | 0.655 | 0.115 | 0.175 | 0.729 | 0.096 | 0.162 | 0.751 | 0.087 | 0.145 | 0.749 | 0.106 |
Z2 | 0.230 | 0.655 | 0.115 | 0.175 | 0.729 | 0.095 | 0.196 | 0.699 | 0.105 | 0.166 | 0.749 | 0.084 |
Z3 | 0.057 | 0.883 | 0.059 | 0.094 | 0.848 | 0.058 | 0.229 | 0.697 | 0.074 | 0.145 | 0.749 | 0.106 |
C15 | C16 | C17 | C18 | |||||||||
Z1 | 0.163 | 0.747 | 0.089 | 0.101 | 0.858 | 0.041 | 0.214 | 0.675 | 0.111 | 0.201 | 0.715 | 0.084 |
Z2 | 0.114 | 0.820 | 0.065 | 0.174 | 0.765 | 0.061 | 0.214 | 0.675 | 0.111 | 0.151 | 0.759 | 0.089 |
Z3 | 0.158 | 0.755 | 0.087 | 0.175 | 0.765 | 0.060 | 0.190 | 0.715 | 0.094 | 0.178 | 0.717 | 0.105 |
C21 | C22 | C23 | C31 | |||||||||
Z1 | 0.170 | 0.729 | 0.100 | 0.211 | 0.701 | 0.087 | 0.144 | 0.770 | 0.086 | 0.019 | 0.976 | 0.005 |
Z2 | 0.195 | 0.730 | 0.074 | 0.155 | 0.755 | 0.090 | 0.098 | 0.840 | 0.062 | 0.174 | 0.720 | 0.106 |
Z3 | 0.167 | 0.733 | 0.100 | 0.188 | 0.701 | 0.111 | 0.169 | 0.729 | 0.101 | 0.197 | 0.720 | 0.083 |
C32 | C33 | C34 | C41 | |||||||||
Z1 | 0.053 | 0.889 | 0.058 | 0.020 | 0.975 | 0.005 | 0.108 | 0.828 | 0.064 | 0.231 | 0.678 | 0.091 |
Z2 | 0.210 | 0.693 | 0.096 | 0.188 | 0.706 | 0.106 | 0.219 | 0.706 | 0.076 | 0.202 | 0.725 | 0.074 |
Z3 | 0.166 | 0.741 | 0.092 | 0.133 | 0.791 | 0.075 | 0.133 | 0.791 | 0.075 | 0.174 | 0.725 | 0.101 |
C42 | C43 | C51 | C52 | |||||||||
Z1 | 0.047 | 0.899 | 0.054 | 0.079 | 0.882 | 0.039 | 0.053 | 0.889 | 0.058 | 0.020 | 0.975 | 0.005 |
Z2 | 0.169 | 0.729 | 0.101 | 0.147 | 0.764 | 0.089 | 0.210 | 0.693 | 0.096 | 0.188 | 0.706 | 0.106 |
Z3 | 0.144 | 0.770 | 0.086 | 0.174 | 0.720 | 0.106 | 0.166 | 0.741 | 0.092 | 0.133 | 0.791 | 0.075 |
C53 | C61 | C62 | ||||||||||
Z1 | 0.108 | 0.828 | 0.064 | 0.231 | 0.678 | 0.091 | 0.047 | 0.899 | 0.054 | |||
Z2 | 0.219 | 0.706 | 0.076 | 0.202 | 0.725 | 0.074 | 0.169 | 0.729 | 0.101 | |||
Z3 | 0.133 | 0.791 | 0.075 | 0.174 | 0.725 | 0.101 | 0.144 | 0.770 | 0.086 | |||
C71 | C72 | C73 | ||||||||||
Z1 | 0.079 | 0.882 | 0.039 | 0.185 | 0.710 | 0.105 | 0.143 | 0.781 | 0.076 | |||
Z2 | 0.147 | 0.764 | 0.089 | 0.157 | 0.753 | 0.090 | 0.276 | 0.632 | 0.092 | |||
Z3 | 0.174 | 0.720 | 0.106 | 0.212 | 0.710 | 0.078 | 0.273 | 0.636 | 0.091 |
Criteria | ||
---|---|---|
C11 | (0.230, 0.655, 0.115) | (0.057, 0.883, 0.059) |
C12 | (0.175, 0.729, 0.095) | (0.094, 0.848, 0.058) |
C13 | (0.229, 0.697, 0.074) | (0.162, 0.751, 0.087) |
C14 | (0.166, 0.749, 0.084) | (0.145, 0.749, 0.106) |
C15 | (0.163, 0.747, 0.089) | (0.114, 0.820, 0.065) |
C16 | (0.175, 0.765, 0.060) | (0.101, 0.858, 0.041) |
C17 | (0.214, 0.675, 0.111) | (0.190, 0.715, 0.094) |
C18 | (0.201, 0.715, 0.084) | (0.151, 0.759, 0.089) |
C21 | (0.195, 0.730, 0.074) | (0.167, 0.733, 0.100) |
C22 | (0.211, 0.701, 0.087) | (0.155, 0.755, 0.090) |
C23 | (0.169, 0.729, 0.101) | (0.144, 0.770, 0.086) |
C31 | (0.197, 0.720, 0.083) | (0.019, 0.976, 0.005) |
C32 | (0.210, 0.693, 0.096) | (0.053, 0.889, 0.058) |
C33 | (0.188, 0.706, 0.106) | (0.020, 0.975, 0.005) |
C34 | (0.219, 0.706, 0.076) | (0.108, 0.828, 0.064) |
C41 | (0.231, 0.678, 0.091) | (0.174, 0.725, 0.101) |
C42 | (0.169, 0.729, 0.101) | (0.047, 0.899, 0.054) |
C43 | (0.174, 0.720, 0.106) | (0.079, 0.882, 0.039) |
C51 | (0.165, 0.729, 0.106) | (0.047, 0.889, 0.054) |
C52 | (0.179, 0.734, 0.086) | (0.0 17, 0.940, 0.042) |
C53 | (0.180, 0.725, 0.095) | (0.019, 0.940, 0.041) |
C61 | (0.231, 0.672, 0.097) | (0.019, 0.976, 0.005) |
C62 | (0.160, 0.760, 0.080) | (0.015, 0.979, 0.006) |
C71 | (0.210, 0.679, 0.111) | (0.022, 0.932, 0.047) |
C72 | (0.212, 0.710, 0.078) | (0.157, 0.753, 0.090) |
C73 | (0.276, 0.632, 0.092) | (0.143, 0.781, 0.076) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhu, Q.; Yang, D.; Liu, S. Extended Multicriteria Group Decision Making with a Novel Aggregation Operator for Emergency Material Supplier Selection. Entropy 2023, 25, 702. https://doi.org/10.3390/e25040702
Liu L, Zhu Q, Yang D, Liu S. Extended Multicriteria Group Decision Making with a Novel Aggregation Operator for Emergency Material Supplier Selection. Entropy. 2023; 25(4):702. https://doi.org/10.3390/e25040702
Chicago/Turabian StyleLiu, Ling, Qiuyi Zhu, Dan Yang, and Sen Liu. 2023. "Extended Multicriteria Group Decision Making with a Novel Aggregation Operator for Emergency Material Supplier Selection" Entropy 25, no. 4: 702. https://doi.org/10.3390/e25040702
APA StyleLiu, L., Zhu, Q., Yang, D., & Liu, S. (2023). Extended Multicriteria Group Decision Making with a Novel Aggregation Operator for Emergency Material Supplier Selection. Entropy, 25(4), 702. https://doi.org/10.3390/e25040702