Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength
Abstract
:1. Introduction
2. Preliminaries
2.1. Degree
2.2. Information Entropy
2.3. Spreading Model
3. Proposed Method
3.1. Constructing Node Features by Information Entropy
Algorithm 1: Algorithm for generating input features |
Input: network Output: the input features of the node 1. ← Get a list of neighbors for each node. 2. ← Calculate the degree of a node and the average degree of the neighbor. 3. ← Calculate the weights of the node degree and the average degree of the neighbor using information entropy. 4. ← Construct basic features and input features for each node. |
3.2. Message Passing Layer
3.3. Model Framework
Algorithm 2: Algorithm for training the RSGNN model. |
Input: Training networks:G Output: Trained model 1. F ← Generate_Embeddings(G) 2. t ← Calculate_Influence(G) 3. R ← Generate_Relationship_Strength_Matrix 4. ← Create__Model() 5. ← Train_Model(, F, t, R) 6. return |
4. Experimental Evaluation
4.1. Kendall Correlation Coefficient
4.2. Benchmark
4.3. Datasets Description
4.4. Ablation Experiment
4.5. Compared with Benchmark Methods
4.6. Compared with GNN Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, M.E. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, H.; Wang, Z.; Liu, Y. Synchronization criterion of complex networks with time-delay under mixed topologies. Neurocomputing 2018, 295, 8–16. [Google Scholar] [CrossRef]
- Zeng, Y. Evaluation of node importance and invulnerability simulation analysis in complex load-network. Neurocomputing 2020, 416, 158–164. [Google Scholar] [CrossRef]
- Li, H.; Du, P. Human Physiological Behavior Understanding and Parameter Tracking Based on Complex Network Theory. In Proceedings of the Advanced Hybrid Information Processing: 5th EAI International Conference, ADHIP 2021, Virtual, 22–24 October 2021; Proceedings, Part I. pp. 3–14. [Google Scholar]
- Cheng, J.; Yin, P. Analysis of the Complex Network of the Urban Function under the Lockdown of COVID-19: Evidence from Shenzhen in China. Mathematics 2022, 10, 2412. [Google Scholar] [CrossRef]
- Xie, X.; Ying, L.; Cui, X. Price Strategy Analysis of Electricity Retailers Based on Evolutionary Game on Complex Networks. Sustainability 2022, 14, 9487. [Google Scholar] [CrossRef]
- Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 1972, 2, 113–120. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Li, X.; Li, M.; Di, Z.; Fan, Y. Clustering coefficient and community structure of bipartite networks. Phys. A Stat. Mech. Its Appl. 2008, 387, 6869–6875. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Z. Critical nodes identification in complex networks via similarity coefficient. Mod. Phys. Lett. B 2022, 36, 2150620. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Chen, Y.; Hu, M.; Ruan, C. A novel centrality of influential nodes identification in complex networks. IEEE Access 2020, 8, 58742–58751. [Google Scholar] [CrossRef]
- Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef]
- Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, M.; Zhou, T.; Do, Y. Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Xi, J.; Du, C. Fast ranking influential nodes in complex networks using a k-shell iteration factor. Phys. A Stat. Mech. Its Appl. 2016, 461, 171–181. [Google Scholar] [CrossRef]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, Q.; Deng, Y. Identifying influential nodes in complex networks based on the inverse-square law. Phys. A Stat. Mech. Its Appl. 2018, 512, 1044–1059. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, B.; Chen, L.; Gao, T.; Liu, J. Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy. Entropy 2022, 24, 275. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Wu, L.; Zhang, J. Identifying influential nodes in complex networks based on multiple local attributes and information entropy. Entropy 2022, 24, 293. [Google Scholar] [CrossRef]
- Song-Qing, Y.; Yuan, J.; Tian-Chi, T.; Yu-Wei, Y.; Ge-Sheng, G. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Phys. Sin. 2021, 70, 216401. [Google Scholar]
- Lu, P.; Chen, W. Identifying vital nodes in complex networks based on information entropy, minimum dominating set and distance. Int. J. Mod. Phys. B 2021, 35, 2150071. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Chen, G.; Bao, C.; Yan, G. Identifying Key Nodes in Complex Networks Based on Local Structural Entropy and Clustering Coefficient. Math. Probl. Eng. 2022, 2022, 8928765. [Google Scholar] [CrossRef]
- Yu, E.Y.; Wang, Y.P.; Fu, Y.; Chen, D.B.; Xie, M. Identifying critical nodes in complex networks via graph convolutional networks. Knowl.-Based Syst. 2020, 198, 105893. [Google Scholar] [CrossRef]
- Zhao, G.; Jia, P.; Zhou, A.; Zhang, B. InfGCN: Identifying influential nodes in complex networks with graph convolutional networks. Neurocomputing 2020, 414, 18–26. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Jin, L.; Song, M.; Li, Z. A new approach for evaluating node importance in complex networks via deep learning methods. Neurocomputing 2022, 497, 13–27. [Google Scholar] [CrossRef]
- Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef]
- Goldenberg, J.; Libai, B.; Muller, E. Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Acad. Mark. Sci. Rev. 2001, 9, 1–18. [Google Scholar]
- Irfan, M.T.; Ortiz, L.E. On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach. Artif. Intell. 2014, 215, 79–119. [Google Scholar] [CrossRef]
- Moreno, Y.; Pastor-Satorras, R.; Vespignani, A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 2002, 26, 521–529. [Google Scholar] [CrossRef]
- Bae, J.; Kim, S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A Stat. Mech. Its Appl. 2014, 395, 549–559. [Google Scholar] [CrossRef]
- Onnela, J.P.; Saramäki, J.; Hyvönen, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.L. Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7332–7336. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. The treatment of ties in ranking problems. Biometrika 1945, 33, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Knuth, D.E. The Stanford GraphBase: A Platform for Combinatorial Computing; ACM: New York, NY, USA, 1993. [Google Scholar]
- Colizza, V.; Pastor-Satorras, R.; Vespignani, A. Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 2007, 3, 276–282. [Google Scholar] [CrossRef]
- Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104. [Google Scholar] [CrossRef]
- Coleman, J.; Katz, E.; Menzel, H. The diffusion of an innovation among physicians. Sociometry 1957, 20, 253–270. [Google Scholar] [CrossRef]
- Gleiser, P.M.; Danon, L. Community structure in jazz. Adv. Complex Syst. 2003, 6, 565–573. [Google Scholar] [CrossRef]
- Kunegis, J. Konect: The koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 1343–1350. [Google Scholar]
- Ewing, R.M.; Chu, P.; Elisma, F.; Li, H.; Taylor, P.; Climie, S.; McBroom-Cerajewski, L.; Robinson, M.D.; O’Connor, L.; Li, M.; et al. Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol. Syst. Biol. 2007, 3, 89. [Google Scholar] [CrossRef]
- Leskovec, J.; Mcauley, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. 2012, 25, 539–547. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of âĂŸsmall-worldâĂŹnetworks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 31, 1025–1035. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
Symbols | Explanation of Symbols |
---|---|
V | The set of nodes in the network |
n | Total number of nodes |
A | Adjacency matrix of the network |
I | Unit matrix of n×n dimensions |
Degree value of node u | |
Average neighbor degree of node u | |
The list of neighbors of node u | |
The basic feature of node u | |
The input feature of node u | |
Weighting of the degree | |
Weighting of the average degree of the neighbor | |
Number of common neighbors of node i and node j | |
R | Relationship strength matrix |
Network | n | |E| | <k> | Δ | C | r |
---|---|---|---|---|---|---|
Adjnoun | 112 | 425 | 8 | 49 | 0.16 | −0.12 |
4039 | 88,233 | 44 | 1045 | 0.52 | 0.06 | |
Hamster | 1788 | 12,476 | 14 | 272 | 0.09 | −0.09 |
Jazz | 198 | 2742 | 28 | 100 | 0.52 | 0.02 |
Faa | 1226 | 2410 | 4 | 34 | 0.06 | −0.01 |
Figeys | 2217 | 6418 | 6 | 314 | 0.01 | −0.33 |
Lesmis | 77 | 255 | 7 | 36 | 0.5 | −0.16 |
Moreno | 117 | 465 | 8 | 26 | 0.17 | −0.08 |
Netscience | 379 | 914 | 5 | 34 | 0.43 | −0.08 |
PowerGrid | 4941 | 6594 | 3 | 19 | 0.1 | 0.00 |
Polbooks | 105 | 442 | 9 | 25 | 0.35 | −0.13 |
USAir | 332 | 2126 | 13 | 139 | 0.4 | −0.21 |
Network | RSGNN_K | RSGNN_ | RSGNN | ||
---|---|---|---|---|---|
Adjnoun | 0.65 | 0.35 | 0.9 | 0.92 | 0.92 |
0.68 | 0.32 | 0.8 | 0.79 | 0.81 | |
Hamster | 0.78 | 0.22 | 0.9 | 0.9 | 0.91 |
Jazz | 0.82 | 0.18 | 0.92 | 0.9 | 0.93 |
Faa | 0.7 | 0.3 | 0.82 | 0.85 | 0.88 |
Figeys | 0.8 | 0.2 | 0.79 | 0.66 | 0.79 |
Lesmis | 0.79 | 0.21 | 0.9 | 0.9 | 0.92 |
Moreno | 0.69 | 0.31 | 0.85 | 0.87 | 0.87 |
Netscience | 0.63 | 0.37 | 0.84 | 0.84 | 0.86 |
PowerGrid | 0.7 | 0.3 | 0.52 | 0.59 | 0.59 |
Polbooks | 0.74 | 0.26 | 0.85 | 0.88 | 0.9 |
USAir | 0.84 | 0.16 | 0.89 | 0.88 | 0.89 |
Network | GCN | GAT | GraphSAGE | RSGNN |
---|---|---|---|---|
Adjnoun | 0.84 | 0.5 | 0.77 | 0.92 |
0.69 | 0.74 | 0.71 | 0.81 | |
Hamster | 0.84 | 0.7 | 0.73 | 0.91 |
Jazz | 0.88 | 0.72 | 0.82 | 0.93 |
Faa | 0.69 | 0.7 | 0.78 | 0.88 |
Figeys | 0.73 | 0.66 | 0.64 | 0.79 |
Lesmis | 0.71 | 0.65 | 0.73 | 0.92 |
Moreno | 0.78 | 0.34 | 0.8 | 0.87 |
Netscience | 0.65 | 0.73 | 0.77 | 0.86 |
PowerGrid | 0.49 | 0.45 | 0.52 | 0.59 |
Polbooks | 0.82 | 0.56 | 0.8 | 0.9 |
USAir | 0.85 | 0.73 | 0.71 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Cui, X. Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength. Entropy 2023, 25, 754. https://doi.org/10.3390/e25050754
Xi Y, Cui X. Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength. Entropy. 2023; 25(5):754. https://doi.org/10.3390/e25050754
Chicago/Turabian StyleXi, Ying, and Xiaohui Cui. 2023. "Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength" Entropy 25, no. 5: 754. https://doi.org/10.3390/e25050754
APA StyleXi, Y., & Cui, X. (2023). Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength. Entropy, 25(5), 754. https://doi.org/10.3390/e25050754