Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Conventional Method for Determining b-Value
2.3. HIST-PPM
2.4. Foreshock Identification
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Utsu, T. A method for determing the value of b in a formula log N = a − bM showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ. 1965, 13, 99–103. (In Japanese) [Google Scholar]
- Scholz, C.H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 1968, 58, 399–415. [Google Scholar] [CrossRef]
- Scholz, C.H. On the stress dependence of earthquake b value. Geophys. Res. Lett. 2015, 42, 1399–1402. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, S.K.; Huang, T.C.; Huang, H.H.; Chao, W.A.; Koulakov, I. Relationship between earthquake b-values and crustal stresses in a Young orogenic belt. Geophys. Res. Lett. 2018, 45, 1832–1837. [Google Scholar] [CrossRef]
- Amitrano, D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res. Solid Earth 2003, 108, 2044. [Google Scholar] [CrossRef]
- Goebel, T.H.W.; Schorlemmer, D.; Becker, T.W.; Dresen, G.; Sammis, C.G. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett. 2013, 40, 2049–2054. [Google Scholar] [CrossRef]
- Nanjo, K.Z. Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nat. Commun. 2020, 11, 3082. [Google Scholar] [CrossRef]
- Nanjo, K.Z.; Izutsu, J.; Orihara, Y.; Furuse, N.; Togo, S.; Nitta, H.; Okada, T.; Tanaka, R.; Kamogawa, M.; Nagao, T. Seismicity prior to the 2016 Kumamoto earthquakes. Earth Planets Space 2016, 68, 187. [Google Scholar] [CrossRef]
- Shi, H.; Meng, L.; Zhang, X.; Chang, Y.; Yang, Z.; Xie, W.; Hattori, K.; Han, P. Decrease in b value prior to the Wenchuan earthquake (Ms8.0). Chin. J. Geophys. 2018, 61, 1874–1882. [Google Scholar] [CrossRef]
- Nanjo, K.Z.; Izutsu, J.; Orihara, Y.; Kamogawa, M.; Nagao, T. Changes in seismicity pattern due to the 2016 Kumamoto earthquakes identify a highly stressed area on the Hinagu fault zone. Geophys. Res. Lett. 2019, 46, 9489–9496. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Miao, M.; Zeng, Z.; Chen, H.; Shi, H.; Li, D.; Liu, L.; Su, Y.; Han, P. Assessing earthquake forecast performance based on b value in Yunnan province, China. Entropy 2021, 23, 730. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakov, R.; Zhuang, J.; Ogata, Y. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence. Geophys. J. Int. 2018, 212, 1–13. [Google Scholar] [CrossRef]
- Ogata, Y.; Imoto, M.; Katsura, K. 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto district, Japan. Geophys. J. Int. 1991, 104, 135–146. [Google Scholar] [CrossRef]
- Zhuang, J. Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space 2011, 63, 207–216. [Google Scholar] [CrossRef]
- Si, Z.; Jiang, C. Research on parameter calculation for the Ogata-Katsura 1993 model in terms of the frequency-magnitude distribution based on a data-driven approach. Seismol. Res. Lett. 2019, 90, 1318–1329. [Google Scholar] [CrossRef]
- Kamer, Y.; Hiemer, S. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. J. Geophys. Res. Solid Earth 2015, 120, 5191–5214. [Google Scholar] [CrossRef]
- Xie, W.; Hattori, K.; Han, P. Temporal Variation and Statistical Assessment of the b Value off the Pacific Coast of Tokachi, Hokkaido, Japan. Entropy 2019, 21, 249. [Google Scholar] [CrossRef]
- El-Isa, Z.H.; Eaton, D.W. Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics 2014, 615–616, 1–11. [Google Scholar] [CrossRef]
- Kulhánek, O. Seminar on b-Value; Charles University: Prague, Czech Republic, 2005. [Google Scholar]
- Nanjo, K.Z.; Hirata, N.; Obara, K.; Kasahara, K. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys. Res. Lett. 2012, 39, 20304. [Google Scholar] [CrossRef]
- Nuannin, P.; Kulhanek, O.; Persson, L. Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys. Res. Lett. 2005, 32, L11307. [Google Scholar] [CrossRef]
- Jones, L.M.; Molnar, P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. Solid Earth 1979, 84, 3596–3608. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- Utsu, T. On seismicity, Report of the Joint Research. Inst. Stat. Math. Tokyo 1992, 34, 139–157. [Google Scholar]
- Bengoubou-Valérius, M.; Gibert, D. Bootstrap determination of the reliability of b-values: An assessment of statistical estimators with synthetic magnitude series. Nat. Hazards 2013, 65, 443–459. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, C.; Yin, F.; Zhang, Y.; Bi, J.; Long, F.; Si, Z.; Yin, X. A new method for calculating b-value of time sequence based on data-driven (TbDD): A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan. Acta Geophys. Sin. 2021, 64, 3126–3134. [Google Scholar] [CrossRef]
- Long, F.; Qi, Y.; Yi, G.; Wu, W.; Wang, G.; Zhao, X.; Peng, G. Relocation of the Ms 6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis. Chin. J. Geophys. 2021, 64, 2631–2646. [Google Scholar] [CrossRef]
- Lei, X.; Wang, Z.; Ma, S.; He, C. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence, Yunnan, China. Acta Seismol. Sin. 2021, 43, 261–286. [Google Scholar] [CrossRef]
- Zhou, Y.; Ghosh, A.; Fang, L.; Yue, H.; Zhou, S.; Su, Y. A high-resolution seismic catalog for the 2021 Ms6.4/Mw6.1 Yangbi earthquake sequence, Yunnan, China: Application of AI picker and Matched Filter. Earthq. Sci. 2021, 34, 390–398. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Long, F.; Zhu, G.; Qin, M.; Zhong, Y.; Xu, Q.; Yang, H. Short-term foreshock and aftershock patterns of the 2021 Ms 6.4 Yangbi earthquake sequence. Seismol. Res. Lett. 2021, 93, 21–32. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Neri, G.; Wiemer, S.; Mostaccio, A. Stability and significance tests for b-value anomalies: Example from the Tyrrhenian Sea. Geophys. Res. Lett. 2003, 30, 1835. [Google Scholar] [CrossRef]
- Ogata, Y.; Katsura, K.; Tanemura, M.; Harte, D.; Zhuang, J. Hierarchical Space-Time Point-Process Models (HIST-PPM): Software Documentation. 2020. Available online: http://bemlar.ism.ac.jp/ogata/HIST-PPM-V3/ (accessed on 3 May 2023).
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chen, L. Active tectonics and earthquake activities in China. Earth Sci. Front. 2003, 10, 66–73. [Google Scholar]
- Woessner, J.; Wiemer, S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am. 2005, 95, 684–698. [Google Scholar] [CrossRef]
- Aki, K. Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull. Earthq. Res. Inst. Univ. Tokyo 1965, 43, 237–239. [Google Scholar]
- Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Utsu, T. Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches. Pure Appl. Geophys. 1999, 155, 509–535. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Zhuang, J. A test on methods for MC estimation based on earthquake catalog. Earth Planet. Phys. 2018, 2, 150–162. [Google Scholar] [CrossRef]
- Lippiello, E.; Marzocchi, W.; De Arcangelis, L.; Godano, C. Spatial organization of foreshocks as a tool to forecast large earthquakes. Sci. Rep. 2012, 2, 846. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Allen, R.M.; Becker, T.W.; Behn, M.D.; Brodsky, E.E.; Bürgmann, R.; Ebinger, C.; Freymueller, J.T.; Gerstenberger, M.; Haines, B.; et al. New opportunities to study earthquake precursors. Seismol. Res. Lett. 2020, 91, 2444–2447. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci. 2016, 3, 480–486. [Google Scholar] [CrossRef]
- Chouliaras, G.; Skordas, E.S.; Sarlis, N.V. Earthquake Nowcasting: Retrospective Testing in Greece. Entropy 2023, 25, 379. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Zhuang, J.; Chen, C.H.; Liu, J.Y.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
- Zhuang, J.; Matsu’ura, M.; Han, P. Critical zone of the branching crack model for earthquakes: Inherent randomness, earthquake predictability, and precursor modelling. Eur. Phys. J. Spec. Top. 2021, 230, 409–424. [Google Scholar] [CrossRef]
- Chen, H.; Han, P.; Hattori, K. Recent advances and challenges in the seismo-electromagnetic study: A brief review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Lombardi, A.M. A normalized distance test for co-determining the completeness magnitude and b-value of earthquake catalogs. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021242. [Google Scholar] [CrossRef]
- van der Elst, N.J. B-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021027. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chang, Y.; Han, P.; Miao, M.; Zeng, Z.; Shi, H.; Li, D.; Liu, L.; Su, Y. Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence. Entropy 2023, 25, 759. https://doi.org/10.3390/e25050759
Wang R, Chang Y, Han P, Miao M, Zeng Z, Shi H, Li D, Liu L, Su Y. Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence. Entropy. 2023; 25(5):759. https://doi.org/10.3390/e25050759
Chicago/Turabian StyleWang, Rui, Ying Chang, Peng Han, Miao Miao, Zhiyi Zeng, Haixia Shi, Danning Li, Lifang Liu, and Youjin Su. 2023. "Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence" Entropy 25, no. 5: 759. https://doi.org/10.3390/e25050759
APA StyleWang, R., Chang, Y., Han, P., Miao, M., Zeng, Z., Shi, H., Li, D., Liu, L., & Su, Y. (2023). Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence. Entropy, 25(5), 759. https://doi.org/10.3390/e25050759