Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantum Classification Algorithms and Quantum Embeddings
2.2. Quantum Fidelity and RBF Fidelity Classifiers
2.3. Quantum Metric Learning
2.4. Datasets
3. Results
3.1. Pre-Processing
3.2. Classification
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Performance Metrics
- true positives (TP)—number of positive samples classified as positive
- false positives (FP)—number of negative samples classified as positive
- true negatives (TN)—number of negative samples classified as negative
- false negatives (FN)—number of positive samples classified as negative
References
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Verdon, G.; Huang, H.Y.; Cincio, L.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Durr, C.; Hoyer, P. A quantum algorithm for finding the minimum. arXiv 1996, arXiv:quant-ph/9607014. [Google Scholar]
- Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 2001, 292, 472–475. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef]
- Neven, H.; Denchev, V.S.; Rose, G.; Macready, W.G. Training a large scale classifier with the quantum adiabatic algorithm. arXiv 2009, arXiv:0912.0779. [Google Scholar]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. The quest for a Quantum Neural Network. Quantum Inf. Process. 2014, 13, 2567–2586. [Google Scholar] [CrossRef]
- Farhi, E.; Neven, H. Classification with quantum neural networks on near term processors. arXiv 2018, arXiv:1802.06002. [Google Scholar]
- Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 2019, 4, 043001. [Google Scholar] [CrossRef]
- Tacchino, F.; Barkoutsos, P.; Macchiavello, C.; Tavernelli, I.; Gerace, D.; Bajoni, D. Quantum implementation of an artificial feed-forward neural network. Quantum Sci. Technol. 2020, 5, 044010. [Google Scholar] [CrossRef]
- Mangini, S.; Tacchino, F.; Gerace, D.; Bajoni, D.; Macchiavello, C. Quantum computing models for artificial neural networks. EPL Europhys. Lett. 2021, 134, 10002. [Google Scholar] [CrossRef]
- Tacchino, F.; Mangini, S.; Barkoutsos, P.K.; Macchiavello, C.; Gerace, D.; Tavernelli, I.; Bajoni, D. Variational Learning for Quantum Artificial Neural Networks. IEEE Trans. Quantum Eng. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Liu, J.; Najafi, K.; Sharma, K.; Tacchino, F.; Jiang, L.; Mezzacapo, A. Analytic Theory for the Dynamics of Wide Quantum Neural Networks. Phys. Rev. Lett. 2023, 130, 150601. [Google Scholar] [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef]
- Lloyd, S.; Schuld, M.; Ijaz, A.; Izaac, J.; Killoran, N. Quantum embeddings for machine learning. arXiv 2020, arXiv:2001.03622. [Google Scholar]
- Liu, Y.; Arunachalam, S.; Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 2021, 17, 1013–1017. [Google Scholar] [CrossRef]
- Peters, E.; Caldeira, J.; Ho, A.; Leichenauer, S.; Mohseni, M.; Neven, H.; Spentzouris, P.; Strain, D.; Perdue, G.N. Machine learning of high dimensional data on a noisy quantum processor. Npj Quantum Inf. 2021, 7, 161. [Google Scholar] [CrossRef]
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Jerbi, S.; Fiderer, L.J.; Poulsen Nautrup, H.; Kübler, J.M.; Briegel, H.J.; Dunjko, V. Quantum machine learning beyond kernel methods. Nat. Commun. 2023, 14, 517. [Google Scholar] [CrossRef]
- Wu, S.L.; Sun, S.; Guan, W.; Zhou, C.; Chan, J.; Cheng, C.L.; Pham, T.; Qian, Y.; Wang, A.Z.; Zhang, R.; et al. Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Phys. Rev. Res. 2021, 3, 033221. [Google Scholar] [CrossRef]
- Schuhmacher, J.; Boggia, L.; Belis, V.; Puljak, E.; Grossi, M.; Pierini, M.; Vallecorsa, S.; Tacchino, F.; Barkoutsos, P.; Tavernelli, I. Unravelling physics beyond the standard model with classical and quantum anomaly detection. arXiv 2023, arXiv:2301.10787. [Google Scholar]
- Woźniak, K.A.; Belis, V.; Puljak, E.; Barkoutsos, P.; Dissertori, G.; Grossi, M.; Pierini, M.; Reiter, F.; Tavernelli, I.; Vallecorsa, S. Quantum anomaly detection in the latent space of proton collision events at the LHC. arXiv 2023, arXiv:2301.10780. [Google Scholar]
- Sancho-Lorente, T.; Román-Roche, J.; Zueco, D. Quantum kernels to learn the phases of quantum matter. Phys. Rev. A 2022, 105, 042432. [Google Scholar] [CrossRef]
- Grossi, M.; Ibrahim, N.; Radescu, V.; Loredo, R.; Voigt, K.; Von Altrock, C.; Rudnik, A. Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection. IEEE Trans. Quantum Eng. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Mensa, S.; Sahin, E.; Tacchino, F.; Barkoutsos, P.K.; Tavernelli, I. Quantum machine learning framework for virtual screening in drug discovery: A prospective quantum advantage. Mach. Learn. Sci. Technol. 2023, 4, 015023. [Google Scholar] [CrossRef]
- Li, Y.; Benjamin, S.C. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Phys. Rev. X 2017, 7, 021050. [Google Scholar] [CrossRef]
- Temme, K.; Bravyi, S.; Gambetta, J.M. Error Mitigation for Short-Depth Quantum Circuits. Phys. Rev. Lett. 2017, 119. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Benjamin, S.C.; Li, Y. Practical Quantum Error Mitigation for Near-Future Applications. Phys. Rev. X 2018, 8, 031027. [Google Scholar] [CrossRef]
- Earnest, N.; Tornow, C.; Egger, D.J. Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware. Phys. Rev. Res. 2021, 3, 043088. [Google Scholar] [CrossRef]
- Kim, Y.; Wood, C.J.; Yoder, T.J.; Merkel, S.T.; Gambetta, J.M.; Temme, K.; Kandala, A. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 2023, 19, 752–759. [Google Scholar] [CrossRef]
- Melo, A.; Earnest-Noble, N.; Tacchino, F. Pulse-efficient quantum machine learning. arXiv 2022, arXiv:2211.01383. [Google Scholar]
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 2018, 9, 4812. [Google Scholar] [CrossRef]
- Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021, 12, 1791. [Google Scholar] [CrossRef]
- Thanasilp, S.; Wang, S.; Nghiem, N.A.; Coles, P.J.; Cerezo, M. Subtleties in the trainability of quantum machine learning models. arXiv 2021, arXiv:2110.14753. [Google Scholar] [CrossRef]
- Kübler, J.; Buchholz, S.; Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural Inf. Process. Syst. 2021, 34, 12661–12673. [Google Scholar]
- Shaydulin, R.; Wild, S.M. Importance of kernel bandwidth in quantum machine learning. Phys. Rev. A 2022, 106, 042407. [Google Scholar] [CrossRef]
- Canatar, A.; Peters, E.; Pehlevan, C.; Wild, S.M.; Shaydulin, R. Bandwidth enables generalization in quantum kernel models. arXiv 2022, arXiv:2206.06686. [Google Scholar]
- Thanasilp, S.; Wang, S.; Cerezo, M.; Holmes, Z. Exponential concentration and untrainability in quantum kernel methods. arXiv 2022, arXiv:2208.11060. [Google Scholar]
- Glick, J.R.; Gujarati, T.P.; Corcoles, A.D.; Kim, Y.; Kandala, A.; Gambetta, J.M.; Temme, K. Covariant quantum kernels for data with group structure. arXiv 2021, arXiv:2105.03406. [Google Scholar]
- Shashua, A. Introduction to machine learning: Class notes 67577. arXiv 2009, arXiv:0904.3664. [Google Scholar]
- Farhi, E.; Harrow, A.W. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv 2019, arXiv:1602.07674. [Google Scholar]
- Barenco, A.; Berthiaume, A.; Deutsch, D.; Ekert, A.; Jozsa, R.; Macchiavello, C. Stabilization of quantum computations by symmetrization. SIAM J. Comput. 1997, 26, 1541–1557. [Google Scholar] [CrossRef]
- Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1997, 89, 31–71. [Google Scholar] [CrossRef]
- Romano, J.D.; Le, T.T.; La Cava, W.; Gregg, J.T.; Goldberg, D.J.; Chakraborty, P.; Ray, N.L.; Himmelstein, D.; Fu, W.; Moore, J.H. PMLB v1. 0: An open-source dataset collection for benchmarking machine learning methods. Bioinformatics 2022, 38, 878–880. [Google Scholar] [CrossRef]
- Gorman, R.P.; Sejnowski, T.J. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw. 1988, 1, 75–89. [Google Scholar] [CrossRef]
- Wolberg, W.; Mangasarian, O.; Street, N. Breast Cancer Wisconsin (Diagnostic). In UCI Machine Learning Repository; UCI: Irvine, CA, USA, 1995. [Google Scholar] [CrossRef]
- Kessler, R.; Narayan, G.; Avelino, A.; Bachelet, E.; Biswas, R.; Brown, P.; Chernoff, D.; Connolly, A.; Dai, M.; Daniel, S.; et al. Models and simulations for the photometric LSST astronomical time series classification challenge (PLAsTiCC). Publ. Astron. Soc. Pac. 2019, 131, 094501. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis for Special Types of Data; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
Dataset | # Features | # Positives | # Negatives | Source | Description |
---|---|---|---|---|---|
MNIST | 28 × 28 | 500 | 500 | [48] | Grayscale images of hand-written digits (0’s vs. 9’s) |
fMNIST | 28 × 28 | 500 | 500 | [49] | Grayscale images of clothing (T-shirts vs. dresses) |
musk | 166 | 207 | 269 | [50,51] | Molecules occurring in different conformations (musk vs. non-musk) |
sonar | 60 | 97 | 111 | [51,52] | Sonar signals (bounced off a metal cylinder vs. a roughly cylindrical rock) |
cancer | 30 | 212 | 357 | [53] | Characteristics of breast cancer tumors (benign vs. malignant) |
plasticc | 67 | 500 | 500 | [54] | Photometric LSST Astronomical Time-series Classification Challenge dataset. Pre-processed by [22] (type II vs. Ia supernovae) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, M.; Schuhmacher, J.; Barkoutsos, P.; Tavernelli, I.; Tacchino, F. Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets. Entropy 2023, 25, 860. https://doi.org/10.3390/e25060860
John M, Schuhmacher J, Barkoutsos P, Tavernelli I, Tacchino F. Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets. Entropy. 2023; 25(6):860. https://doi.org/10.3390/e25060860
Chicago/Turabian StyleJohn, Manuel, Julian Schuhmacher, Panagiotis Barkoutsos, Ivano Tavernelli, and Francesco Tacchino. 2023. "Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets" Entropy 25, no. 6: 860. https://doi.org/10.3390/e25060860
APA StyleJohn, M., Schuhmacher, J., Barkoutsos, P., Tavernelli, I., & Tacchino, F. (2023). Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets. Entropy, 25(6), 860. https://doi.org/10.3390/e25060860