Formation with Non-Collision Control Strategies for Second-Order Multi-Agent Systems
Abstract
:1. Introduction
2. Problem Statement
- 1.
- A set of vertices N corresponding to the n agents in the system.
- 2.
- A set of edges , which denotes the agent receive information from .
- 3.
- A set of labels , where is a vector that specifies the relative position between agents and .
- 1.
- , for all ;
- 2.
- when ;
- 3.
- , for all .
- The second-order multi-agent system avoids collisions among them, i.e.,
- The agents reach a desired geometric pattern, i.e.,
3. Control Strategy
3.1. Formation Control
3.2. Collision Avoidance Control
4. Numerical Simulations
4.1. Two Agents
4.2. Ten Agents with a Mixed Graph Communication Topology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RVFs | Repulsive Vector Fields |
RPA | Repulsive Potential Approach |
MDPI | Multidisciplinary Digital Publishing Institute |
References
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 500–505. [Google Scholar] [CrossRef]
- Hernández-Martínez, E.G.; Aranda-Bricaire, E. Convergence and Collision Avoidance in Formation Control: A Survey of the Artificial Potential Functions Approach. In Multi-Agent Systems; Alkhateeb, F., Maghayreh, E.A., Doush, I.A., Eds.; IntechOpen: Rijeka, Croatia, 2011; Chapter 6; pp. 103–126. [Google Scholar] [CrossRef] [Green Version]
- Flores-Resendiz, J.F.; Aranda-Bricaire, E.; González-Sierra, J.; Santiaguillo-Salinas, J. Finite-time formation control without collisions for multiagent systems with communication graphs composed of cyclic paths. Math. Probl. Eng. 2015, 2015, 948086. [Google Scholar] [CrossRef] [Green Version]
- Santiaguillo-Salinas, J.; Aranda-Bricaire, E. Containment problem with time-varying formation and collision avoidance for multiagent systems. Int. J. Adv. Robot. Syst. 2017, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Flores-Resendiz, J.F.; Aranda-Bricaire, E. A general solution to the formation control problem without collisions for first order multi-agent systems. Robotica 2020, 38, 1123–1137. [Google Scholar] [CrossRef]
- Hernandez-Martinez, E.; Aranda-Bricaire, E. Non-Collision Conditions in Multi-Agent Virtual Leader-Based Formation Control. Int. J. Adv. Robot. Syst. 2012, 9, 100. [Google Scholar] [CrossRef]
- Dou, L.; Yu, X.; Liu, L.; Wang, X.; Feng, G. Moving-Target Enclosing Control for Mobile Agents with Collision Avoidance. IEEE Trans. Control. Netw. Syst. 2021, 8, 1669–1679. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Liu, L.; Zhu, X.; Zhao, C.; Pan, Q. Convergent Multiagent Formation Control with Collision Avoidance. IEEE Trans. Robot. 2020, 36, 1805–1818. [Google Scholar] [CrossRef]
- Mao, R.; Dai, H. Distributed Non-Convex Model Predictive Control for Non-Cooperative Collision Avoidance of Networked Differential Drive Mobile Robots. IEEE Access 2021, 10, 52674–52685. [Google Scholar] [CrossRef]
- Panagou, D. Motion planning and collision avoidance using navigation vector fields. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2513–2518. [Google Scholar] [CrossRef]
- Raj, J.; Raghuwaiya, K.; Vanualailai, J. Collision Avoidance of 3D Rectangular Planes by Multiple Cooperating Autonomous Agents. J. Adv. Transp. 2020, 2020, 4723687. [Google Scholar] [CrossRef]
- Sakai, D.; Fukushima, H.; Matsuno, F. Leader-follower navigation in obstacle environments while preserving connectivity without data transmission. IEEE Trans. Control. Syst. Technol. 2018, 26, 1233–1248. [Google Scholar] [CrossRef] [Green Version]
- Seung-Mok, L.; Hyun, M. Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots. IET Control Theory Appl. 2015, 9, 2075–2083. [Google Scholar] [CrossRef]
- Hernandez-Martinez, E.; Aranda-Bricaire, E. Collision Avoidance in Formation Control using Discontinuous Vector Fields. IFAC Proc. Vol. 2013, 46, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Vargas, S.; Becerra, H.M.; Hayet, J.B. MPC-based distributed formation control of multiple quadcopters with obstacle avoidance and connectivity maintenance. Control Eng. Pract. 2022, 121, 105054. [Google Scholar] [CrossRef]
- Gnanasekera, M.; Katupitiya, J. A Time-Efficient Method to Avoid Collisions for Collision Cones: An Implementation for UAVs Navigating in Dynamic Environments. Drones 2022, 6, 106. [Google Scholar] [CrossRef]
- Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Dang, A.D.; La, H.M.; Nguyen, T.; Horn, J. Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach. Int. J. Adv. Robot. Syst. 2019, 16, 1–16. [Google Scholar] [CrossRef]
- Yoo, S.J.; Kim, T.H. Distributed formation tracking of networked mobile robots under unknown slippage effects. Automatica 2015, 54, 100–106. [Google Scholar] [CrossRef]
- Yoo, S.J.; Park, B.S. Connectivity preservation and collision avoidance in networked nonholonomic multi-robot formation systems: Unified error transformation strategy. Automatica 2019, 103, 274–281. [Google Scholar] [CrossRef]
- Park, B.S.; Yoo, S.J. Connectivity-Maintaining and Collision-Avoiding Performance Function Approach for Robust Leader–Follower Formation Control of Multiple Uncertain Underactuated Surface Vessels. Automatica 2021, 127, 109501. [Google Scholar] [CrossRef]
- Li, S.; Wang, X. Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 2013, 49, 3359–3367. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, M.; Qiao, L. Adaptive barrier Lyapunov function-based obstacle avoidance control for an autonomous underwater vehicle with multiple static and moving obstacles. Ocean Eng. 2022, 243, 110303. [Google Scholar] [CrossRef]
- Yang, S.; Weiwei, B.; Li, T.; Shi, Q.; Yang, Y.; Yue, W.; Chen, C. Neural-network-based Formation Control with Collision, Obstacle Avoidance and Connectivity Maintenance for a Class of Second-order Nonlinear Multi-Agent Systems. Neurocomputing 2021, 439, 243–255. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Li, D. Collision-avoiding formation for multiple Euler–Lagrange systems against external disturbances and actuator faults. J. Frankl. Inst. 2022, 359, 6336–6360. [Google Scholar] [CrossRef]
- Ajwad, S.A.; Moulay, E.; Defoort, M.; Ménard, T.; Coirault, P. Collision-Free Formation Tracking of Multi-Agent Systems Under Communication Constraints. IEEE Control Syst. Lett. 2021, 5, 1345–1350. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, X.; Chen, Y.H. Satellite Formation-Containment Control Emphasis on Collision Avoidance and Uncertainty Suppression. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- Flores-Resendiz, J.; Avilés, D.; Aranda-Bricaire, E. Formation Control for Second-Order Multi-Agent Systems with Collision Avoidance. Machines 2023, 11, 208. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications; Number 2 in Applied Mathematical Sciences; Springer: New York, NY, USA, 1988. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry; Number v. 1 in A Comprehensive Introduction to Differential Geometry; Publish or Perish, Incorporated: Houston, TX, USA, 1999. [Google Scholar]
- Godsil, C.; Royle, G. Algebraic Graph Theory. In Graduate Texts in Mathematics; Springer: New York, NY, USA, 2001; Volume 207. [Google Scholar]
- Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. In Communications and Control Engineering Series; Springer: London, UK, 2008. [Google Scholar]
- Teel, A.R. Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 1992, 18, 165–171. [Google Scholar] [CrossRef]
- Tatsch, A.; Fitz-Coy, N. Dynamic artificial potential function guidance for autonomous on-orbit servicing. In Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, Loutrak, Greece, 17–20 October 2005; pp. 1–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Bricaire, E.; González-Sierra, J. Formation with Non-Collision Control Strategies for Second-Order Multi-Agent Systems. Entropy 2023, 25, 904. https://doi.org/10.3390/e25060904
Aranda-Bricaire E, González-Sierra J. Formation with Non-Collision Control Strategies for Second-Order Multi-Agent Systems. Entropy. 2023; 25(6):904. https://doi.org/10.3390/e25060904
Chicago/Turabian StyleAranda-Bricaire, Eduardo, and Jaime González-Sierra. 2023. "Formation with Non-Collision Control Strategies for Second-Order Multi-Agent Systems" Entropy 25, no. 6: 904. https://doi.org/10.3390/e25060904
APA StyleAranda-Bricaire, E., & González-Sierra, J. (2023). Formation with Non-Collision Control Strategies for Second-Order Multi-Agent Systems. Entropy, 25(6), 904. https://doi.org/10.3390/e25060904