A Note on the Connection between Non-Additive Entropy and h-Derivative
Abstract
:1. Introduction
2. -Derivative
- Sum and differenceConsidering the sum and difference rules of the h-derivative, we have
- Product and quotient rulesAs for the product and quotient rules,
- h-derivative of elementary functionsSome other basic calculations of it are expressed:
3. h-Derivative and Non-Additive Entropy
4. Properties
4.1. Non-Negativity
4.2. Extremal at Equal Probabilities
4.3. Expansibility
4.4. Non-Additivity
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens, M. Dynamics and Thermodynamics of Systems with Long-Range Interactions: An Introduction. In Dynamics and Thermodynamics of Systems with Long-Range Interactions; Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Salzberg, A.M. Exact statistical thermodynamics of gravitational interactions in one and two dimensions. J. Math. Phys. 1965, 6, 158–160. [Google Scholar] [CrossRef]
- Montroll, E.W.; Shlesinger, M.F. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. J. Stat. Phys. 1983, 32, 209–230. [Google Scholar] [CrossRef]
- Tsallis, C. Some comments on Boltzmann-Gibbs statistical mechanics. Chaos Solitons Fractals 1995, 6, 539–559. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Plastino, A.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A 1995, 222, 347–354. [Google Scholar] [CrossRef]
- Biró, T.S.; Shen, K.M.; Zhang, B.W. Non-extensive quantum statistics with particle-hole symmetry. Physica A 2015, 428, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.M.; Zhang, B.W.; Wang, E.K. Generalized Ensemble Theory with Non-extensive Statistics. Physica A 2017, 487, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.M.; Zhang, H.; Hou, D.F.; Zhang, B.W.; Wang, E.K. Chiral Phase Transition in Linear Sigma Model with Nonextensive Statistical Mechanics. Adv. High Energy Phys. 2017, 2017, 4135329. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at = 7 TeV. Phys. Rev. Lett. 2010, 105, 022002. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V.M.; et al. Transverse Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at = 0.9 and 2.36 TeV. J. High Energy Phys. 2010, 2010, 41. [Google Scholar] [CrossRef] [Green Version]
- Betzler, A.S.; Borges, E.P. Nonextensive distributions of asteroid rotation periods and diameters. Astron. Astrophys. 2012, 539, A158. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Du, J. The viscosity of charged particles in the weakly ionized plasma with power-law distributions. Phys. Plasmas 2018, 25, 062309. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Shafee, F. Generalized Entropies and Statistical Mechanics. arXiv 2004, arXiv:cond-mat/0409037. [Google Scholar]
- Abe, S. A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997, 224, 326–330. [Google Scholar] [CrossRef]
- Borges, E.P.; Roditi, I. A family of nonextensive entropies. Phys. Lett. A 1998, 246, 399–402. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002; Volume 113. [Google Scholar]
- Jagerman, D.L. Difference Equations with Applications to Queues; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Shafee, F. Lambert function and a new non-extensive form of entropy. IMA J. Appl. Math. 2007, 72, 785–800. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. I. Nonextensive Statistical Mechanics and Thermodynamics: Historical Background and Present Status. In Nonextensive Statistical Mechanics and Its Applications; Abe, S., Okamoto, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–98. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Extensive Generalization of Statistical Mechanics Based on Incomplete Information Theory. Entropy 2003, 5, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. What are the numbers that experiments provide. Quim. Nova 1994, 17, 468–471. [Google Scholar]
- Qureshi, M.N.S.; Nasir, W.; Masood, W.; Yoon, P.H.; Shah, H.A.; Schwartz, S.J. Terrestrial lion roars and non-Maxwellian distribution. J. Geophys. Res. Space Phys. 2014, 119, 10059–10067. [Google Scholar] [CrossRef] [Green Version]
- Abid, A.A.; Ali, S.; Du, J.; Mamun, A.A. Vasyliunas-Cairns distribution function for space plasma species. Phys. Plasmas 2015, 22, 084507. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y. Uncertainty measure in evidence theory. Sci. China Inf. Sci. 2020, 63, 210201. [Google Scholar] [CrossRef]
- Jackson, F.H. Generalization of the differential operative symbol with an extended form of Boole’s equation. Mess. Math. 1909, 38, 57. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193. [Google Scholar]
- Ernst, T. The History of Q-Calculus and a New Method; UUDM Report; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R. Applications of q-Calculus in Operator Theory; SpringerLink: Bücher; Springer: New York, NY, USA, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-W.; Shen, K.-M.; Zhang, B.-W. A Note on the Connection between Non-Additive Entropy and h-Derivative. Entropy 2023, 25, 918. https://doi.org/10.3390/e25060918
Kang J-W, Shen K-M, Zhang B-W. A Note on the Connection between Non-Additive Entropy and h-Derivative. Entropy. 2023; 25(6):918. https://doi.org/10.3390/e25060918
Chicago/Turabian StyleKang, Jin-Wen, Ke-Ming Shen, and Ben-Wei Zhang. 2023. "A Note on the Connection between Non-Additive Entropy and h-Derivative" Entropy 25, no. 6: 918. https://doi.org/10.3390/e25060918
APA StyleKang, J. -W., Shen, K. -M., & Zhang, B. -W. (2023). A Note on the Connection between Non-Additive Entropy and h-Derivative. Entropy, 25(6), 918. https://doi.org/10.3390/e25060918