Geometrothermodynamic Cosmology
Abstract
:1. Introduction
2. The Formalism of GTD
2.1. The Phase Space
2.2. The Equilibrium Space
3. Two-Dimensional GTD
4. Generating Fundamental Equations
5. Relativistic Cosmology
- The Universe is homogeneous and isotropic at each instant of time.
- Gravity is the dominant interaction of the Universe, and its behavior is dictated by Einstein’s equations [59]
- At large scales, the Universe can be considered as a perfect fluid with energy-momentum tensor [60]
- The Universe can be considered as a thermodynamic system.
6. Geometrothermodynamic Cosmological Models
6.1. More on Dark Energy
6.2. An Example of Inflationary Fluid
7. Final Outlooks and Perspectives
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frankel, T. The Geometry of Physics: An Introduction; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191. [Google Scholar] [CrossRef] [Green Version]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer: New York, NY, USA, 1995. [Google Scholar]
- Huang, K. Statistical Mechanics; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatics; John Wiley & Sons, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Rao, C.R. Information and the Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Calcutta Math. Soc. 1945, 37, 81. [Google Scholar]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. 1922, A222, 309–368. [Google Scholar]
- Amari, S. Differential-Geometrical Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Weinhold, F. Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2488–2495. [Google Scholar] [CrossRef]
- Weinhold, F. Metric geometry of equilibrium thermodynamics I, II, III, IV, V. J. Chem. Phys. 1976, 65, 558. [Google Scholar]
- Weinhold, F. Classical and Geometrical Theory of Chemical and Phase Thermodynamics; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605, Erratum in Rev. Mod. Phys. 1996, 68, 313. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamic Curvature and Black Holes. Springer Proc. Phys. 2014, 153, 179. [Google Scholar]
- Åman, J.E.; Bengtsson, I.; Pidokrajt, N. Geometry of black hole thermodynamics. Gen. Rel. Grav. 2003, 35, 1733. [Google Scholar] [CrossRef]
- Åman, J.E.; Pidokrajt, N. Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D 2006, 73, 024017. [Google Scholar] [CrossRef] [Green Version]
- Åman, J.E.; Pidokrajt, N. Flat Information Geometries in Black Hole Thermodynamics. Gen. Rel. Grav. 2006, 38, 1305. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Cai, R.G.; Wang, B.; Su, R.K. Thermodynamic Geometry and Critical Behavior of Black Holes. arXiv 2005, arXiv:gr-qc/0512035. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Cho, J.H. Thermodynamic curvature of the BTZ black hole. Phys. Rev. D 1999, 60, 067502. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. On the Thermodynamic Geometry of BTZ Black Holes. J. High Energy Phys. 2006, 0611, 015. [Google Scholar] [CrossRef] [Green Version]
- Medved, A.J.M. A Commentary on Ruppeiner Metrics for Black Holes. Mod. Phys. Lett. A 2008, 23, 2149. [Google Scholar] [CrossRef] [Green Version]
- Mirza, B.; Zamaninasab, M. Ruppeiner Geometry of RN Black Holes: Flat or Curved? J. High Energy Phys. 2007, 0706, 059. [Google Scholar] [CrossRef]
- Quevedo, H. Geometrothermodynamics of black holes. Gen. Rel. Grav. 2008, 40, 971. [Google Scholar] [CrossRef] [Green Version]
- Hermann, R. Geometry, Physics and Systems; Marcel Dekker: New York, NY, USA, 1973. [Google Scholar]
- Quevedo, H. Geometrothermodynamics. J. Math. Phys. 2007, 48, 013506. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Sánchez, A.; Vázquez, A. Relativistic like structure of classical thermodynamics. Gen. Rel. Grav. 2015, 47, 1. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Quevedo, M.N.; Sánchez, A. Geometrothermodynamics of van der Waals systems. J. Geom. Phys. 2022, 176, 104495. [Google Scholar] [CrossRef]
- Quevedo, H.; Quevedo, M.N.; Sánchez, A. J. Geom. Phys. 2023; in press.
- Zaldivar, S.A.; Quevedo, H. Ideal quantum gases: A geometrothermodynamic approach. J. Geom. Phys. 2023, 189, 104837. [Google Scholar] [CrossRef]
- Quevedo, H.; Tapias, D. Geometric description of chemical reactions. J. Math. Chem. 2014, 52, 141. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Quevedo, M.N. Geometrothermodynamic approach in econophysics. Int. J. Geom. Meth. Mod. Phys. 2022, 2350057. [Google Scholar] [CrossRef]
- Quevedo, H.; Sánchez, A. Geometrothermodynamics of asymptotically anti-de Sitter black holes. J. High Energy Phys. 2008, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Sánchez, A. Geometric description of BTZ black hole thermodynamics. Phys. Rev. D 2009, 79, 024012. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Sánchez, A. Gauge Theory Of Weak and Electromagnetic Interactions. Phys. Rev. D. 2009, 79, 087504. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.; Quevedo, H.; Saifullah, K.; Sánchez, A.; Taj, S. Thermodynamic geometry of charged rotating BTZ black holes. Phys. Rev. D 2011, 83, 084031. [Google Scholar] [CrossRef] [Green Version]
- Janke, W.; Johnston, D.A.; Kenna, R. Geometrothermodynamics of the Kehagias-Sfetsos black hole. J. Phys. A 2010, 43, 425206. [Google Scholar] [CrossRef]
- Chen, P. Thermodynamic Geometry of the Born-Infeld-anti-de Sitter black holes. Int. J. Mod. Phys. A 2011, 26, 3091. [Google Scholar] [CrossRef]
- Mansoori, S.A.H.; Mirza, B. Correspondence of phase transition points and singularities of thermodynamic geometry of black holes. Eur. Phys. J. C 2014, 74, 2681. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, S.A.H.; Mirza, B.; Fazel, M. Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry. J. High Energy Phys. 2015, 4, 115. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lü, H.; Luo, M.; Shao, K.N. Thermodynamical metrics and black hole phase transitions. J. High Energy Phys. 2010, 1012, 054. [Google Scholar] [CrossRef] [Green Version]
- Hendi, S.H.; Panahiyan, S.; Panah, B.E.; Mommennia, M. A new approach toward geometrical concept of black hole thermodynamics. Eur. Phys. J. C 2015, 75, 507. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, S.A.H.; Mirza, B. Geometrothermodynamics as a singular conformal thermodynamic geometry. Phys. Lett. B 2019, 799, 135040. [Google Scholar] [CrossRef]
- Aviles, A.; Bastarrachea-Almodovar, A.; Campuzano, L.; Quevedo, H. Extending the generalized Chaplygin gas model by using geometrothermodynamics. Phys. Rev. D 2012, 86, 063508. [Google Scholar] [CrossRef] [Green Version]
- Benaoum, H.; Luongo, O.; Quevedo, H. Extensions of modified Chaplygin gas from Geometrothermodynamics. Eur. Phys. J. C 2019, 79, 1. [Google Scholar] [CrossRef]
- Luongo, O.; Quevedo, H. Cosmological implications of geometrothermodynamics. In The Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories; WSPC: Singapore, 2015; pp. 1580–1582. [Google Scholar]
- Gruber, C.; Quevedo, H. Geometrothermodynamic model for the evolution of the Universe. J. Cosmol. Astropart. Phys. 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.K.; Rice, J.W. Differential Geometry and Statistics; CRC Press: Boca Raton, FL, USA, 1993; Volume 48. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1980. [Google Scholar]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford University Press: New York, NY, USA, 1971. [Google Scholar]
- Zhu, Y. Large-Scale Inhomogeneous Thermodynamics; Cambridge International Science Publishing: Cambridge, UK, 2003. [Google Scholar]
- Belgiorno, F. Quasi-homogeneous Thermodynamics and Black Holes. J. Math. Phys. 2003, 44, 1089. [Google Scholar] [CrossRef] [Green Version]
- Belgiorno, F. Black Hole Thermodynamics in Carathéodory’s Approach. Phys. Lett. A 2003, 312, 224. [Google Scholar] [CrossRef] [Green Version]
- Belgiorno, F.; Cacciatori, S.L. General Symmetries: From Homogeneous Thermodynamics to Black Holes. Eur. Phys. J. Plus 2011, 126, 86. [Google Scholar] [CrossRef]
- Quevedo, H.; Quevedo, M.N.; Sánchez, A. Homogeneity and thermodynamic identities in geometrothermodynamics. Eur. Phys. J. C 2017, 77, 158. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, H.; Quevedo, M.N.; Sánchez, A. Quasi-homogeneous black hole thermodynamics. Eur. Phys. J. C 2019, 79, 229. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W. Harmonic maps as models for physical theories. Phys. Rev. D 1978, 18, 4510. [Google Scholar] [CrossRef]
- Johnson, C.V. D-Branes; Cambridge University Press: London, UK, 2002. [Google Scholar]
- Vázquez, A.; Quevedo, H.; Sánchez, A. Thermodynamic systems as extremal hypersurfaces. J. Geom. Phys. 2010, 60, 1942. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman Publishes: San Francisco, CA, USA, 2000. [Google Scholar]
- Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Bravetti, A.; Luongo, O. Thermodynamic parametrization of dark energy. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450071. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luongo, O.; Quevedo, H. Geometrothermodynamic Cosmology. Entropy 2023, 25, 1037. https://doi.org/10.3390/e25071037
Luongo O, Quevedo H. Geometrothermodynamic Cosmology. Entropy. 2023; 25(7):1037. https://doi.org/10.3390/e25071037
Chicago/Turabian StyleLuongo, Orlando, and Hernando Quevedo. 2023. "Geometrothermodynamic Cosmology" Entropy 25, no. 7: 1037. https://doi.org/10.3390/e25071037
APA StyleLuongo, O., & Quevedo, H. (2023). Geometrothermodynamic Cosmology. Entropy, 25(7), 1037. https://doi.org/10.3390/e25071037